27 resultados para Soil erosion -- Queensland, Central

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Loess Plateau, China, arable cultivation of slope lands is common and associated with serious soil erosion. Planting trees or grass may control erosion, but planted species may consume more soil water and can threaten long-term ecosystem sustainability. Natural vegetation succession is an alternative ecological solution to restore degraded land, but there is a time cost, given that the establishment of natural vegetation, adequate to prevent soil erosion, is a longer process than planting. The aims of this study were to identify the environmental factors controlling the type of vegetation established on abandoned cropland and to identify candidate species that might be sown soon after abandonment to accelerate vegetation succession and establishment of natural vegetation to prevent soil erosion. A field survey of thirty-three 2 × 2–m plots was carried out in July 2003, recording age since abandonment, vegetation cover, and frequency of species together with major environmental and soil variables. Data were analyzed using correspondence analysis, classification tree analysis, and species response curves. Four vegetation types were identified and the data analysis confirmed the importance of time since abandonment, total P, and soil water in controlling the type of vegetation established. Among the dominant species in the three late-successional vegetation types, the most appropriate candidates for accelerating and directing vegetation succession were King Ranch bluestem (Bothriochloa ischaemum) and Lespedeza davurica (Leguminosae). These species possess combinations of the following characteristics: tolerance of low water and nutrient availability, fibrous root system and strong lateral vegetative spread, and a persistent seed bank.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many lowland rivers across northwest Europe exhibit broadly similar behavioural responses to glacial-interglacial transitions and landscape development. Difficulties exist in assessing these, largely because the evidence from many rivers remains limited and fragmentary. Here we address this issue in the context of the river Kennet, a tributary of the Thames, since c. 13,000 cal BP. Some similarities with other rivers are present, suggesting that regional climatic shifts are important controls. The Kennet differs from the regional pattern in a number of ways. The rate of response to sudden climatic change, particularly at the start of the Holocene and also mid-Holocene forest clearance, appears very high. This may reflect abrupt shifts between two catchment scale hydrological states arising from contemporary climates, land use change and geology. Stadial hydrology is dominated by nival regimes, with limited winter infiltration and high spring and summer runoff. Under an interglacial climate, infiltration is more significant. The probable absence of permafrost in the catchment means that a lag between the two states due to its gradual decay is unlikely. Palaeoecology, supported by radiocarbon dates, suggests that, at the very start of the Holocene, a dramatic episode of fine sediment deposition across most of the valley floor occurred, lasting 500-1000 years. A phase of peat accumulation followed as mineral sediment supply declined. A further shift led to tufa deposition, initially in small pools, then across the whole floodplain area, with the river flowing through channels cut in tufa and experiencing repeated avulsion. Major floods, leaving large gravel bars that still form positive relief features on the floodplain, followed mid-Holocene floodplain stability. Prehistoric deforestation is likely to be the cause of this flooding, inducing a major environmental shift with significantly increased surface runoff. Since the Bronze Age, predominantly fine sediments were deposited along the valley with apparently stable channels and vertical floodplain accretion associated with soil erosion and less catastrophic flooding. The Kennet demonstrates that, while a general pattern of river behaviour over time, within a region, may be identifiable, individual rivers are likely to diverge from this. Consequently, it is essential to understand catchment controls, particularly the relative significance of surface and subsurface hydrology. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Requirements for research, practices and policies affecting soil management in relation to global food security are reviewed. Managing soil organic carbon (C) is central because soil organic matter influences numerous soil properties relevant to ecosystem functioning and crop growth. Even small changes in total C content can have disproportionately large impacts on key soil physical properties. Practices to encourage maintenance of soil C are important for ensuring sustainability of all soil functions. Soil is a major store of C within the biosphere – increases or decreases in this large stock can either mitigate or worsen climate change. Deforestation, conversion of grasslands to arable cropping and drainage of wetlands all cause emission of C; policies and international action to minimise these changes are urgently required. Sequestration of C in soil can contribute to climate change mitigation but the real impact of different options is often misunderstood. Some changes in management that are beneficial for soil C, increase emissions of nitrous oxide (a powerful greenhouse gas) thus cancelling the benefit. Research on soil physical processes and their interactions with roots can lead to improved and novel practices to improve crop access to water and nutrients. Increased understanding of root function has implications for selection and breeding of crops to maximise capture of water and nutrients. Roots are also a means of delivering natural plant-produced chemicals into soil with potentially beneficial impacts. These include biocontrol of soil-borne pests and diseases and inhibition of the nitrification process in soil (conversion of ammonium to nitrate) with possible benefits for improved nitrogen use efficiency and decreased nitrous oxide emission. The application of molecular methods to studies of soil organisms, and their interactions with roots, is providing new understanding of soil ecology and the basis for novel practical applications. Policy makers and those concerned with development of management approaches need to keep a watching brief on emerging possibilities from this fast-moving area of science. Nutrient management is a key challenge for global food production: there is an urgent need to increase nutrient availability to crops grown by smallholder farmers in developing countries. Many changes in practices including inter-cropping, inclusion of nitrogen-fixing crops, agroforestry and improved recycling have been clearly demonstrated to be beneficial: facilitating policies and practical strategies are needed to make these widely available, taking account of local economic and social conditions. In the longer term fertilizers will be essential for food security: policies and actions are needed to make these available and affordable to small farmers. In developed regions, and those developing rapidly such as China, strategies and policies to manage more precisely the necessarily large flows of nutrients in ways that minimise environmental damage are essential. A specific issue is to minimise emissions of nitrous oxide whilst ensuring sufficient nitrogen is available for adequate food production. Application of known strategies (through either regulation or education), technological developments, and continued research to improve understanding of basic processes will all play a part. Decreasing soil erosion is essential, both to maintain the soil resource and to minimise downstream damage such as sedimentation of rivers with adverse impacts on fisheries. Practical strategies are well known but often have financial implications for farmers. Examples of systems for paying one group of land users for ecosystem services affecting others exist in several parts of the world and serve as a model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiocarbon-dated palaeoecological records from the upland zone of the northern Apennines spanning the Mid-Late Holocene (last 7000 years) have been evaluated using established criteria for detecting anthropogenic impact on the landscape and environment. The integrated palaeoecological records across the study area collectively indicate human interference with natural vegetation succession and landscape modification from at least the Middle Neolithic. These activities resulted in the progressive decline of Abies, Ulmus, Fraxinus and Tilia, and the spread of Fagus, from ∼7000 cal BP, accompanied at various times by evidence for biomass burning, soil erosion, the expansion of shrubland and herbaceous taxa, and the possible cultivation of Olea, Juglans and Castanea. Comparison of these data with the archaeological scheme for the region, and the climate history of the central-western Mediterranean, has revealed that the palaeoecological records broadly support the archaeological evidence, but suggest that several key vegetation changes also coincide with important periods of climate change, especially at ∼7800–5000 cal BP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote sensing can potentially provide information useful in improving pollution transport modelling in agricultural catchments. Realisation of this potential will depend on the availability of the raw data, development of information extraction techniques, and the impact of the assimilation of the derived information into models. High spatial resolution hyperspectral imagery of a farm near Hereford, UK is analysed. A technique is described to automatically identify the soil and vegetation endmembers within a field, enabling vegetation fractional cover estimation. The aerially-acquired laser altimetry is used to produce digital elevation models of the site. At the subfield scale the hypothesis that higher resolution topography will make a substantial difference to contaminant transport is tested using the AGricultural Non-Point Source (AGNPS) model. Slope aspect and direction information are extracted from the topography at different resolutions to study the effects on soil erosion, deposition, runoff and nutrient losses. Field-scale models are often used to model drainage water, nitrate and runoff/sediment loss, but the demanding input data requirements make scaling up to catchment level difficult. By determining the input range of spatial variables gathered from EO data, and comparing the response of models to the range of variation measured, the critical model inputs can be identified. Response surfaces to variation in these inputs constrain uncertainty in model predictions and are presented. Although optical earth observation analysis can provide fractional vegetation cover, cloud cover and semi-random weather patterns can hinder data acquisition in Northern Europe. A Spring and Autumn cloud cover analysis is carried out over seven UK sites close to agricultural districts, using historic satellite image metadata, climate modelling and historic ground weather observations. Results are assessed in terms of probability of acquisition probability and implications for future earth observation missions. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was conducted in the forest-steppe region of the Loess Plateau to provide insight into the factors affecting the process of vegetation establishment, and to provide recommendations for the selection of indigenous species in order to speed up the succession process and to allow the establishment of vegetation more resistant to soil erosion. Four distinctive vegetation types were identified, and their distribution was affected not only by the time since abandonment but also by other environmental factors, mainly soil water and total P in the upper soil layers. One of the vegetation types, dominated by Artemisia scoparia, formed the early successional stage after abandonment while the other three types formed later successional stages with their distribution determined by the soil water content and total P. It can be concluded that the selection of appropriate species for introduction to accelerate succession should be determined by the local conditions and especially the total P concentration and soil water content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mitigation Options for Phosphorus and Sediment (MOPS) project investigated the effectiveness of within-field control measures (tramline management, straw residue management, type of cultivation and direction, and vegetative buffers) in terms of mitigating sediment and phosphorus loss from winter-sown combinable cereal crops using three case study sites. To determine the cost of the approaches, simple financial spreadsheet models were constructed at both farm and regional levels. Taking into account crop areas, crop rotation margins per hectare were calculated to reflect the costs of crop establishment, fertiliser and agro-chemical applications, harvesting, and the associated labour and machinery costs. Variable and operating costs associated with each mitigation option were then incorporated to demonstrate the impact on the relevant crop enterprise and crop rotation margins. These costs were then compared to runoff, sediment and phosphorus loss data obtained from monitoring hillslope-length scale field plots. Each of the mitigation options explored in this study had potential for reducing sediment and phosphorus losses from arable land under cereal crops. Sediment losses were reduced from between 9 kg ha−1 to as much as 4780 kg ha−1 with a corresponding reduction in phosphorus loss from 0.03 kg ha−1 to 2.89 kg ha−1. In percentage terms reductions of phosphorus were between 9% and 99%. Impacts on crop rotation margins also varied. Minimum tillage resulted in cost savings (up to £50 ha−1) whilst other options showed increased costs (up to £19 ha−1 for straw residue incorporation). Overall, the results indicate that each of the options has potential for on-farm implementation. However, tramline management appeared to have the greatest potential for reducing runoff, sediment, and phosphorus losses from arable land (between 69% and 99%) and is likely to be considered cost-effective with only a small additional cost of £2–4 ha−1, although further work is needed to evaluate alternative tramline management methods. Tramline management is also the only option not incorporated within current policy mechanisms associated with reducing soil erosion and phosphorus loss and in light of its potential is an approach that should be encouraged once further evidence is available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapidly increasing population densities in Malawi have put a huge strain on the existing agricultural land and the surrounding woodland. Smallholder agriculture is the dominant economic activity of Malawi’s rural population and many farmers have been forced to cultivate marginal lands with less fertile soils, making conditions much more difficult to grow crops. Natural woodland is under increasing pressure from the opening of new lands for cultivation and the increased demand for firewood, timber and other woody resources, with rural households historically obtaining most of their complementary inputs and saleable commodities from nearby areas of forest (Arnold, 1997a). Despite this increasing pressure, woodlands are not being cleared indiscriminately; selected indigenous species are left standing in fields and around households. These are joined by exotic species that are planted and maintained. These trees provide products and services that are vital, yielding food, firewood, building materials and medicine, replenishing soil fertility and protecting against soil erosion. Following a Boserupian approach, this study attempts to establish the reality of a trajectory of enhanced on-farm tree planting and management as population pressure mounts and as part of a more general process of agricultural intensification. The study examines the combination of factors (social, economic, political and environmental) that either stimulate or discourage on-farm tree planting on smallholdings in Malawi, highlighting how woodland resource use changes over a gradient of land use intensity. This study gives a detailed insight into the way that tree planting and management in the smallholder farming system in Malawi works and identifies a trend of increased tree planting/management alongside an increase in agricultural intensification. However, there is no single ‘path’ of intensification; the link between agricultural change and tree planting is complex and there are many trajectories of intensification that a farmer may follow, dependent on his/her social or economic circumstances. The study recommends that agroforestry interventions give rigorous consideration to the needs of the local community, and the suitability of trees to address those needs, before embarking on programmes that advocate tree planting and management as a panacea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have examined the contributions sucrose and sawdust make to the net immobilization of inorganic soil N and assimilation of both C and N into microbial biomass when they are used as part of a restoration plan to promote the establishment of indigenous vegetation on abandoned agricultural fields on the Central Hungarian Plain. Both amendments led to net N immobilization. Sucrose addition also led to mobilization of N from the soil organic N pool and its immobilization into microbial biomass, whereas sawdust addition apparently immobilized soil N into a non-biomass compartment or a biomass component that was not detected by the conventional biomass N assay (CHCl3 fumigation and extraction). This suggests that the N was either cycled through the biomass, but not immobilized within it, or that it was immobilized in a protected biomass fraction different to the fraction into which N was immobilized in response to sucrose addition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The particle size distributions of surface soils from two cultivated silty fields (Moorfield and Railway South) in Herefordshire, UK, were assessed by sampling on 20-m grids across the fields. Moorfield (8 ha) had a uniform landscape sloping mainly in a North-South direction while Railway South (12 ha) had complex undulating landscape characteristics. Samples from 3 surficial layers were also taken at 3 landscape positions at Moorfield to investigate recent (within-season) soil particle redistribution. Size fractions were determined using chemical dispersion, wet sieving (to separate the sand fractions) and laser gramilometry (for the finer fractions). The distribution of various fractions and the relationships between elevation and the various fractions suggest preferential detachment and movement of coarse to very coarse silt fractions (16-63 mu m), which were found mostly at downslope or depositional areas. Upper slope samples had higher clay to fine silt (< 16 mu m) contents than bottom slope samples. The upslope-downslope patterns of size fractions, particularly on uniformly sloping areas, of the 2 fields were similar and their deposited sediments were dominated by coarse silt fractions. Samples from 3 landscape positions at Moorfield became coarser from the less eroded summit, through the eroding side-slope to the bottom-slope depositional area. Within each of these landscape positions the top 0-2.5 cm layers were more enriched in coarse silt fractions than the bottom layers. The spatial patterns of soil particle size distributions in the 2 fields may be a result of sediment detachment and deposition caused by water erosion and tillage operations. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two sites in central England where sewage sludge has been deposited for decades were studied to measure the heavy metal distribution in the soil profiles. The first site (S 1) was a field receiving heavy loads sludge from a nearby wastewater treatment plant, and the second (S2) was a farm applying 'normal' sludge rates of 8 t ha(-1) y(-1) of the same sludge. Soil samples were also taken by a near-by untreated control site. In S I the movement of heavy metals was significant even down to 80 cm depth compared to the control. In S2, the concentrations of lead (Pb) and zinc (Zn) and the organic matter content were higher than the control down to 20 cm, while nickel (Ni) moved significantly down to 80 cm. This underlies. the possibility that the metals bound onto organic surfaces moved along with organic matter down to that depth. The movement of metals in S2 points out the potential risks of applying sewage sludge for a long time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Representative Soil Sampling Scheme (RSSS) has monitored the soil of agricultural land in England and Wales since 1969. Here we describe the first spatial analysis of the data from these surveys using geostatistics. Four years of data (1971, 1981, 1991 and 2001) were chosen to examine the nutrient (available K, Mg and P) and pH status of the soil. At each farm, four fields were sampled; however, for the earlier years, coordinates were available for the farm only and not for each field. The averaged data for each farm were used for spatial analysis and the variograms showed spatial structure even with the smaller sample size. These variograms provide a reasonable summary of the larger scale of variation identified from the data of the more intensively sampled National Soil Inventory. Maps of kriged predictions of K generally show larger values in the central and southeastern areas (above 200 mg L-1) and an increase in values in the west over time, whereas Mg is fairly stable over time. The kriged predictions of P show a decline over time, particularly in the east, and those of pH show an increase in the east over time. Disjunctive kriging was used to examine temporal changes in available P using probabilities less than given thresholds of this element. The RSSS was not designed for spatial analysis, but the results show that the data from these surveys are suitable for this purpose. The results of the spatial analysis, together with those of the statistical analyses, provide a comprehensive view of the RSSS database as a basis for monitoring the soil. These data should be taken into account when future national soil monitoring schemes are designed.