64 resultados para Soil conditions

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are currently concerns within some sugar industries that long-term monoculture has led to soil degradation and consequent yield decline. An investigation was conducted in Swaziland to assess the effects of fallowing and green manuring practices, over a seven-month period, on sugarcane yields and the physical properties of a poorly draining clay soil. In the subsequent first sugarcane crop after planting, yields were improved from 129 t ha(-1) under continuous sugarcane to 141-144 t ha(-1) after fallowing and green manuring, but there were no significant responses in the first and second ratoon crops. Also, in the first crop after planting, root length index increased from 3.5 km m(-2) under continuous sugarcane to 5.2-6.8 km m(-2) after fallowing, and improved rooting was still evident in the first ratoon crop where there had been soil drying during the fallow period. Soil bulk density, total porosity and water-holding capacity were not affected by the fallowing practices. However, air-filled porosity increased from 11% under continuous sugarcane to 16% after fallowing, and steady state ponded infiltration rates were increased from 0.61 mm h(-1) to 1.34 mm h(-1), but these improvements were no longer evident after a year back under sugarcane. Levels of soil organic matter were reduced in all cases, probably as a result of the tillage operations involved. In the plant crop, root length was well correlated with air-filled porosity, indicating the importance of improving belowground air supply for crop production on poorly draining clay soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of presubmergence and green manuring on various processes involved in [N-15]-urea transformations were studied in a growth chamber after [N-15]-urea application to floodwater. Presubmergence for 14 days increased urea hydrolysis rates and floodwater pH, resulting in higher NH3 volatilization as compared to without presubmergence. Presubmergence also increased nitrification and subsequent denitrification but lower N assimilation by floodwater algae caused higher gaseous losses. Addition of green manure maintained higher NH4+-N concentration in floodwater mainly because of lower nitrification rates but resulted in highest NH3 volatilization losses. Although green manure did not affect the KCl extractable NH4+-N from applied fertilizer, it maintained higher NH4+-N content due to its decomposition and increased mineralization of organic N. After 32 days about 36.9% (T-1), 23.9% (T-2), and 36.4% (T-3) of the applied urea N was incorporated in the pool of soil organic N in treatments. It was evident that the presubmergence has effected the recovery of applied urea N.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil-dwelling insect herbivores are significant pests in many managed ecosystems. Because eggs and larvae are difficult to observe, mathematical models have been developed to predict life-cycle events occurring in the soil. To date, these models have incorporated very little empirical information about how soil and drought conditions interact to shape these processes. This study investigated how soil temperature (10, 15, 20 and 25 °C), water content (0.02 (air dried), 0.10 and 0.25 g g−1) and pH (5, 7 and 9) interactively affected egg hatching and early larval lifespan of the clover root weevil (Sitona lepidus Gyllenhal, Coleoptera: Curculionidae). Eggs developed over 3.5 times faster at 25 °C compared with 10 °C (hatching after 40.1 and 11.5 days, respectively). The effect of drought on S. lepidus eggs was investigated by exposing eggs to drought conditions before wetting the soil (2–12 days later) at four temperatures. No eggs hatched in dry soil, suggesting that S. lepidus eggs require water to remain viable. Eggs hatched significantly sooner in slightly acidic soil (pH 5) compared with soils with higher pH values. There was also a significant interaction between soil temperature, pH and soil water content. Egg viability was significantly reduced by exposure to drought. When exposed to 2–6 days of drought, egg viability was 80–100% at all temperatures but fell to 50% after 12 days exposure at 10 °C and did not hatch at all at 20 °C and above. Drought exposure also increased hatching time of viable eggs. The effects of soil conditions on unfed larvae were less influential, except for soil temperature which significantly reduced larval longevity by 57% when reared at 25 °C compared with 10 °C (4.1 and 9.7 days, respectively). The effects of soil conditions on S. lepidus eggs and larvae are discussed in the context of global climate change and how such empirically based information could be useful for refining existing mathematical models of these processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Research into transmissible spongiform encephalopathy (TSE) diseases has become a high priority worldwide in recent years yet remarkably little is known about the behaviour of TSE infectivity in the environment. The resilience and stability of prion proteins could lead to soils becoming a potential reservoir of TSE infectivity as a result of contamination from activities such as infected carcass burial or the dispersion of effluents from slaughter houses, or by contamination of pastures by infected animals, (e.g. scrapie in sheep). Knowledge of the fate of prion proteins in soils, and associated physico-chemical conditions which favour migration, can be used to help prevent re-infection of animals through grazing, to protect watercourses and develop good management practices. In two consecutive experiments of 9 and 6 months, the migration of recombinant ovine PrP (recPrP) in soil columns was followed under contrasting levels of microbial activity (normal versus reduced), under varying regimes of soil water content and redox potential, and in two different soil types (loamy sand and clay loam). At each analysis time (1, 3, 6 or 9 months), in both soil types, full-length recPrP was detected in the original contaminated layer, indicating the resilience and stability of recPrP under varied soil conditions, even in the presence of active soil microbial populations. Evidence of protein migration was found in every soil column at the earliest analysis time (1 or 3 months), but was restricted to a maximum distance of 1 cm, indicative of limited initial mobility in soils followed by strong adsorption over the following days to weeks. The survival of recPrP in the soil over a period of at least 9 months was demonstrated. In this study, recPrP was used as an indicator for potential TSE infectivity, although infectivity tests should be carried out before conclusions can be drawn regarding the infection risk posed by prions in soil. However, it has been demonstrated that soil is likely to act as a significant barrier to the dispersion of contaminated material at storage or burial sites. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Field populations of earthworms have shown a varied response in mortality to the fungicide carbendazim, the toxic reference substance used in agrochemical field trials. The aim of this study was to determine the influence of soil conditions as a potential cause of this variation. Laboratory acute toxicity tests were conducted using a range of artificial soils with varying soil components (organic matter, clay, pH and moisture). Batch adsorption/desorption studies were run to determine the influence of the soil properties on carbendazim behaviour. Adsorption was shown to be correlated with organic matter content and pH and this in turn could be linked to Eisenia fetida mortality, with lower mortality occurring with increased adsorption. Overall while E.fetida mortality did vary significantly between several of the soils the calculated LC50 values in the different soils did not cover a wide range (6.04-16.00 mg kg(-1)), showing that under these laboratory conditions soil components did not greatly influence carbendazim toxicity to E.fietida. (c) 2007 Elsevier Masson SAS. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

RothC and Century are two of the most widely used soil organic matter (SOM) models. However there are few examples of specific parameterisation of these models for environmental conditions in East Africa. The aim of this study was therefore, to evaluate the ability of RothC and the Century to estimate changes in soil organic carbon (SOC) resulting from varying land use/management practices for the climate and soil conditions found in Kenya. The study used climate, soils and crop data from a long term experiment (1976-2001) carried out at The Kabete site at The Kenya National Agricultural Research Laboratories (NARL, located in a semi-humid region) and data from a 13 year experiment carried out in Machang'a (Embu District, located in a semi-arid region). The NARL experiment included various fertiliser (0, 60 and 120 kg of N and P2O5 ha(-1)), farmyard manure (FYM - 5 and 10 t ha(-1)) and plant residue treatments, in a variety of combinations. The Machang'a experiment involved a fertiliser (51 kg N ha(-1)) and a FYM (0, 5 and 10 t ha(-1)) treatment with both monocropping and intercropping. At Kabete both models showed a fair to good fit to measured data, although Century simulations for treatments with high levels of FYM were better than those without. At the Machang'a site with monocrops, both models showed a fair to good fit to measured data for all treatments. However, the fit of both models (especially RothC) to measured data for intercropping treatments at Machang'a was much poorer. Further model development for intercrop systems is recommended. Both models can be useful tools in soil C Predictions, provided time series of measured soil C and crop production data are available for validating model performance against local or regional agricultural crops. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A field monitoring study was carried out to follow the changes of fine root morphology, biomass and nutrient status in relation to seasonal changes in soil solution chemistry and moisture regime in a mature Scots pine stand on acid soil. Seasonal and yearly fluctuations in soil moisture and soil solution chemistry have been observed. Changes in soil moisture accounted for some of the changes in the soil solution chemistry. The results showed that when natural acidification in the soil occurs with low pH (3.5-4.2) and high aluminium concentration in the soil solution (> 3-10 mg l(-1)), fine root longevity and distribution could be affected. However, fine root growth of Scots pine may not be negatively influenced by adverse soil chemical conditions if soil moisture is not a limiting factor for root growth. In contrast, dry soil conditions increase Scots pine susceptibility to soil acidification and this could significantly reduce fine root growth and increase root mortality. It is therefore important to study seasonal fluctuations of the environmental variables when investigating and modelling cause-effect relationships.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1 Plant species differ in their capacity to influence soil organic matter, soil nutrient availability and the composition of soil microbial communities. Their influences on soil properties result in net positive or negative feedback effects, which influence plant performance and plant community composition. 2 For two grassland systems, one on a sandy soil in the Netherlands and one on a chalk soil in the United Kingdom, we investigated how individual plant species grown in monocultures changed abiotic and biotic soil conditions. Then, we determined feedback effects of these soils to plants of the same or different species. Feedback effects were analysed at the level of plant species and plant taxonomic groups (grasses vs. forbs). 3 In the sandy soils, plant species differed in their effects on soil chemical properties, in particular potassium levels, but PLFA (phospholipid fatty acid) signatures of the soil microbial community did not differ between plant species. The effects of soil chemical properties were even greater when grasses and forbs were compared, especially because potassium levels were lower in grass monocultures. 4 In the chalk soil, there were no effects of plant species on soil chemical properties, but PLFA profiles differed significantly between soils from different monocultures. PLFA profiles differed between species, rather than between grasses and forbs. 5 In the feedback experiment, all plant species in sandy soils grew less vigorously in soils conditioned by grasses than in soils conditioned by forbs. These effects correlated significantly with soil chemical properties. None of the seven plant species showed significant differences between performance in soil conditioned by the same vs. other plant species. 6 In the chalk soil, Sanguisorba minor and in particular Briza media performed best in soil collected from conspecifics, while Bromus erectus performed best in soil from heterospecifics. There was no distinctive pattern between soils collected from forb and grass monocultures, and plant performance could not be related to soil chemical properties or PLFA signatures. 7 Our study shows that mechanisms of plant-soil feedback can depend on plant species, plant taxonomic (or functional) groups and site-specific differences in abiotic and biotic soil properties. Understanding how plant species can influence their rhizosphere, and how other plant species respond to these changes, will greatly enhance our understanding of the functioning and stability of ecosystems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The UK Biodiversity Action Plan has identified the creation of lowland heathland as an important objective. Heathland restoration studies have identified soil pH, elevated soil nutrients and large weed seed banks as major problems in the restoration of heathland vegetation on ex-arable land. Heathland vegetation is usually found on nutrient-poor acidic soils. Creating acidic soil conditions on ex-arable sites thus may produce a suitable environment for the establishment of heath vegetation. Soil acidification by the addition of sulphur has been shown to reduce the soil pH and the availability of nutrients in arable soils. A series of experiments was established to investigate the effects of soil acidification using sulphur on the establishment of Calluna vulgaris and the development of weed vegetation. The application of sulphur at 0.24 kg m(-2) to an arable soil was found to increase the survival rate of C. vulgaris cuttings planted in it. The mechanism of increased C. vulgaris survival appeared to be by sulphur application significantly reducing the cover of arable weeds arising from the soil seed bank. Higher rates of sulphur application (0.36 and 0.48 kg m(-2)) resulted in the death of many C. vidgaris plants. However C. vulgaris seedlings were able to establish successfully on these ex-arable soils within 1824 months following the addition of these levels of sulphur. The application of sulphur appears to offer a practical solution to heathland creation on ex-arable land. However, it may be necessary to provide an interval of between 18 and 24 months between the application of sulphur and the addition of C. vulgaris plants or seeds for the successful establishment of heathland vegetation. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Evolutionary theory suggests that divergent natural selection in heterogeneous environments can result in locally adapted plant genotypes. To understand local adaptation it is important to study the ecological factors responsible for divergent selection. At a continental scale, variation in climate can be important while at a local scale soil properties could also play a role. We designed an experiment aimed to disentangle the role of climate and ( abiotic and biotic) soil properties in local adaptation of two common plant species. A grass (Holcus lanatus) and a legume ( Lotus corniculatus), as well as their local soils, were reciprocally transplanted between three sites across an Atlantic-Continental gradient in Europe and grown in common gardens in either their home soil or foreign soils. Growth and reproductive traits were measured over two growing seasons. In both species, we found significant environmental and genetic effects on most of the growth and reproductive traits and a significant interaction between the two environmental effects of soil and climate. The grass species showed significant home site advantage in most of the fitness components, which indicated adaptation to climate. We found no indication that the grass was adapted to local soil conditions. The legume showed a significant home soil advantage for number of fruits only and thus a weak indication of adaptation to soil and no adaptation to climate. Our results show that the importance of climate and soil factors as drivers of local adaptation is species-dependent. This could be related to differences in interactions between plant species and soil biota.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different earthworm species have different tolerances of acid soil conditions, and the application of lime to upland grassland to improve the grazing quality may therefore alter the size and diversity of the earthworm community. Altering soil properties may also affect the chemical characteristics of organic C in earthworm casts. We surveyed the earthworm community of an upland grassland in southern Scotland at the outset of annual lime applications, and after 3 years, and used C-13 nuclear magnetic resonance (NMR) spectroscopy to assess the distribution of C between different functional groups in the organic matter. In addition, soil was incubated for 8 weeks with several earthworm species in the presence or absence of lime, and the earthworm casts were subsequently analysed by C-13 NMR spectroscopy. Liming did not significantly affect earthworm abundance or species diversity, but it did affect the chemical composition of the casts. Casts from earthworms incubated in unlimed soil had greater ratios of alkyl-C to O-alkyl-C, indicative of more decomposed, recalcitrant C, and spectra from litter-feeding species had the greatest intensities of O-alkyl-C signals. In limed soil, the largest O-alkyl-C signal intensities were not restricted to litter-feeding species, indicating an increase in the quality of organic matter ingested by geophagous species.