11 resultados para Soft magnetic material
em CentAUR: Central Archive University of Reading - UK
Resumo:
The LiHoxY1−xF4 Ising magnetic material subject to a magnetic field perpendicular to the Ho3+ Ising direction has shown over the past 20 years to be a host of very interesting thermodynamic and magnetic phenomena. Unfortunately, the availability of other magnetic materials other than LiHoxY1−xF4 that may be described by a transverse-field Ising model remains very much limited. It is in this context that we use here a mean-field theory to investigate the suitability of the Ho(OH)3, Dy(OH)3, and Tb(OH)3 insulating hexagonal dipolar Ising-type ferromagnets for the study of the quantum phase transition induced by a magnetic field, Bx, applied perpendicular to the Ising spin direction. Experimentally, the zero-field critical (Curie) temperatures are known to be Tc≈2.54, 3.48, and 3.72 K, for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. From our calculations we estimate the critical transverse field, Bxc, to destroy ferromagnetic order at zero temperature to be Bxc=4.35, 5.03, and 54.81 T for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. We find that Ho(OH)3, similarly to LiHoF4, can be quantitatively described by an effective S=1/2 transverse-field Ising model. This is not the case for Dy(OH)3 due to the strong admixing between the ground doublet and first excited doublet induced by the dipolar interactions. Furthermore, we find that the paramagnetic (PM) to ferromagnetic (FM) transition in Dy(OH)3 becomes first order for strong Bx and low temperatures. Hence, the PM to FM zero-temperature transition in Dy(OH)3 may be first order and not quantum critical. We investigate the effect of competing antiferromagnetic nearest-neighbor exchange and applied magnetic field, Bz, along the Ising spin direction ẑ on the first-order transition in Dy(OH)3. We conclude from these preliminary calculations that Ho(OH)3 and Dy(OH)3 and their Y3+ diamagnetically diluted variants, HoxY1−x(OH)3 and DyxY1−x(OH)3, are potentially interesting systems to study transverse-field-induced quantum fluctuations effects in hard axis (Ising-type) magnetic materials.
Resumo:
The LiHoxY1-xF4 magnetic material in a transverse magnetic field Bxx̂ perpendicular to the Ising spin direction has long been used to study tunable quantum phase transitions in a random disordered system. We show that the Bx-induced magnetization along the x̂ direction, combined with the local random dilution-induced destruction of crystalline symmetries, generates, via the predominant dipolar interactions between Ho3+ ions, random fields along the Ising ẑ direction. This identifies LiHoxY1-xF4 in Bx as a new random field Ising system. The random fields explain the rapid decrease of the critical temperature in the diluted ferromagnetic regime and the smearing of the nonlinear susceptibility at the spin-glass transition with increasing Bx and render the Bx-induced quantum criticality in LiHoxY1-xF4 likely inaccessible.
Resumo:
Samples of glacial till deposited since the Little Ice Age (LIA) maximum by two glaciers, North Bogbre at Svartisen and Corneliussen-breen at Okstindan, northern Norway, were obtained from transects running from the current glacier snout to the LIA (c. AD 1750) limit. The samples were analysed to determine their sediment magnetic properties, which display considerable variability. Significant trends in some magnetic parameters are evident with distance from the glacier margin and hence length of subaerial exposure. Magnetic susceptibility (X) decreases away from the contemporary snout, perhaps due to the weathering of ferrimagnetic minerals into antiferromagnetic forms, although this trend is generally not statistically significant. Trends in the ratios of soft IRM/hard IRM which are statistically significant support this hypothesis, suggesting that antiferromagnetic minerals are increasing relative to ferrimagnetic minerals towards the LIA maximum. Backfield ratios (IRM -100 mT/SIRM) also display a significant and strong trend towards magnetically harder behaviour with proximity to the LIA maximum. Thus, by employing a chronosequence approach, it may be possible to use sediment magnetics data as a tool for reconstructing glacier retreat in areas where more traditional techniques, such as lichenometry, are not applicable.
Resumo:
The hydrothermal reactions of Ni(NO3)(2).6H(2)O, disodium fumarate (fum) and 1,2-bis(4-pyridyl)ethane (bpe)/1,3-bis(4-pyridyl) propane (bpp) in aqueous-methanol medium yield one 3-D and one 2-D metal-organic hybrid material, [Ni(fum)(bpe)] (1) and [Ni(fum)(bpp)(H2O)] (2), respectively. Complex 1 possesses a novel unprecedented structure, the first example of an "unusual mode" of a five-fold distorted interpenetrated network with metal-ligand linkages where the four six-membered windows in each adamantane-type cage are different. The structural characterization of complex 2 evidences a buckled sheet where nickel ions are in a distorted octahedral geometry, with two carboxylic groups, one acting as a bis-chelate, the other as a bis-monodentate ligand. The metal ion completes the coordination sphere through one water molecule and two bpp nitrogens in cis position. Variable-temperature magnetic measurements of complexes 1 and 2 reveal the existence of very weak antiferromagnetic intramolecular interactions and/or the presence of single-ion zero field splitting (D) of isolated Ni-II ions in both the compounds. Experimentally, both the J parameters are close, comparable and very small. Considering zero-field splitting of Ni-II, the calculated D values are in agreement with values reported in the literature for Ni-II ions. Complex 3, [{Co(phen)}(2)(fum)(2)] (phen=1,10-phenanthroline) is obtained by diffusing methanolic solution of 1,10-phenanthroline on an aqueous layer of disodium fumarate and Co(NO3)(2).6H(2)O. It consists of dimeric Co-II(phen) units, doubly bridged by carboxylate groups in a distorted syn-syn fashion. These fumarate anions act as bis-chelates to form corrugated sheets. The 2D layer has a (4,4) topology, with the nodes represented by the centres of the dimers. The magnetic data were fitted ignoring the very weak coupling through the fumarate pathway and using a dimer model.
Resumo:
There has been limited development in catalyst carriers for magnetic separations where superparamagnetic nanoparticles of a high saturation magnetization with no coercivity are required to isolate expensive catalyst reagent that are subjected to repeated magnetic cycles. By using simple stepwise layer-by-layer nanochemistry techniques, we show that an fee FePt nanomagnet can be created inside each silica particle with tailored dimensions to great precision. Subsequent engineering of the external surface with Ti-O-Si species in an optimum structure to create a unique interface gives high activity and excellent selectivity of the composite material for the trans-stilbene oxidation to the corresponding epoxide in the presence of tert-butyl hydroperoxide. Thus, a new magnetic separable epoxidation catalyst is described. This work clearly demonstrates the significance of nanoengineering of a single catalyst particle by a bottom-up construction approach in modern catalyst design, which could lead to new catalytic. properties.
Resumo:
Water-soluble polymers are often capable of forming interpolymer complexes in solutions and at interfaces, which offers an excellent opportunity for surface modification. The complex formation may be driven by H-bonding between poly(carboxylic acids) and non-ionic polymers or by electrostatic attraction between oppositely-charged polyelectrolytes. In the present communication the following applications of interpolymer complexation in coating technologies will be considered: (1) Complexation between poly(acrylic acid) and non-ionic polymers via H-bonding was used to coat glass surfaces. It was realised using layer-by-layer deposition of IPC on glass surfaces with subsequent cross-linking of dry multilayers by thermal treatment. Depending on the glass surface functionality this complexation resulted in detachable and non-detachable hydrogel films; (2) Electrostatic layer-by-layer self-assembly between glycol chitosan and bovine serum albumin (BSA) was used to coat magnetic nanoparticles. It was demonstrated that the native structure of BSA remains unaffected by the self-assembling process.
Resumo:
A number of poleward moving events were observed between 1130 and 1300 UT on 11 February 2004, during periods of southward interplanetary magnetic field (IMF), while the steerable antenna of the European Incoherent Scatter (EISCAT) Svalbard radar (ESR)and the Tromsø VHF radar pointed nearly northward at low elevation. In this interval, simultaneous SuperDARN CUTLASS Finland radar measurements showed poleward moving radar aurora forms (PMRAFs) which appeared very similar to the density enhancements observed by the ESR northward pointing antenna. These events appeared quasiperiodically with a period of about 10 min. Comparing the observations from the above three radars, it is inferred that there is an almost one‐to‐one correspondence between the poleward moving plasma concentration enhancements (PMPCEs) observed by the ESR and the VHF radar and the PMRAFs measured by the CUTLASS Finland radar. These observations are consistent with the interpretation that the polar cap patch material was generated by photoionization at subauroral latitudes and that the plasma was structured by bursts of magnetopause reconnection giving access to the polar cap. There is clear evidence that plasma structuring into patches was dependent on the variability in IMF |By|. The duration of these events implies that the average evolution time of the newly opened flux tubes from the subauroral region to the polar cap was about 33 min.
Resumo:
We investigate the effect of a secondary star magnetic field on the accretion disc dynamics of dwarf novae. Simulations have been carried out with a particle code and a dipolar magnetic field structure. The magnetic field acts to remove angular momentum from the disc material, increasing the inward mass flow. This makes the accretion disc more centrally condensed, causing a reduction in the recurrence time for dwarf nova outbursts. We have produced Doppler tomograms and light curves which may be compared with observations. These tomograms are significantly different from those produced in the absence of a magnetic field on the secondary. We derive an upper limit to the magnetic moment of the secondary star in UGem of mu_2<2x10^32 A m^2. The magnetic truncation of the accretion disc produces resonance phenomena similar to those seen in the superoutbursts of SUUMa systems. While these have not been observed for systems like UGem, observations of the SUUMa systems provide us with a useful diagnostic of the disc-field interaction. We are able to place an upper limit on the magnetic moment of the secondary in ZCha of mu_2<1x10^30 A m^2.
Resumo:
Bacterial soft rot is a globally significant plant disease that causes major losses in the production of many popular crops, such as potato. Little is known about the dispersal and ecology of soft-rot enterobacteria, and few animals have been identified as vectors for these pathogens. This study investigates whether soil-living and bacterial-feeding nematodes could act as vectors for the dispersal of soft-rot enterobacteria to plants. Soft-rot enterobacteria associated with nematodes were quantified and visualized through bacterial enumeration, GFP-tagging, and confocal and electron scanning microscopy. Soft-rot enterobacteria were able to withstand nematode grazing, colonize the gut of Caenorhabditis elegans and subsequently disperse to plant material while remaining virulent. Two nematode species were also isolated from a rotten potato sample obtained from a potato storage facility in Finland. Furthermore, one of these isolates (Pristionchus sp. FIN-1) was shown to be able to disperse soft-rot enterobacteria to plant material. The interaction of nematodes and soft-rot enterobacteria seems to be more mutualistic rather than pathogenic, but more research is needed to explain how soft-rot enterobacteria remain viable inside nematodes.
Resumo:
The use of magnetic fluids in controlling rod vibrations is investigated. A prototype of ferrofluid vibration damper is designed and experimentally set up based on the principle of anti-resonance. The efficiency of this damping system is verified in experiments and well explained with classical equations of motion. The improvement of the present system towards active control of rod vibration is also discussed.
Resumo:
A new iron(II) coordination polymer, [FeCl2(NC7H9)2(N2C12H12)], has been synthesized under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction. This material crystallizes in the monoclinic space group C2/c, with a = 11.2850(6), b = 13.8925(7), c = 17.0988(9) Å and β = 94.300(3)º (Z = 4). The crystal structure consists of neutral zig-zag chains, in which the iron(II) ions are octahedrally coordinated. The infinite polymer chains are packed into a three-dimensional structure through C–H···Cl interactions. Magnetic susceptibility measurements reveal the existence of weak antiferromagnetic interactions between the iron(II) ions. The effective magnetic moment, μ eff = 5.33 μ B , is consistent with a high-spin iron(II) configuration.