43 resultados para Single Point Mutations
em CentAUR: Central Archive University of Reading - UK
Resumo:
Age-related decline in the integrity of mitochondria is an important contributor to the human ageing process. In a number of ageing stem cell populations, this decline in mitochondrial function is due to clonal expansion of individual mitochondrial DNA (mtDNA) point mutations within single cells. However the dynamics of this process and when these mtDNA mutations occur initially are poorly understood. Using human colorectal epithelium as an exemplar tissue with a well-defined stem cell population, we analysed samples from 207 healthy participants aged 17-78 years using a combination of techniques (Random Mutation Capture, Next Generation Sequencing and mitochondrial enzyme histochemistry), and show that: 1) non-pathogenic mtDNA mutations are present from early embryogenesis or may be transmitted through the germline, whereas pathogenic mtDNA mutations are detected in the somatic cells, providing evidence for purifying selection in humans, 2) pathogenic mtDNA mutations are present from early adulthood (<20 years of age), at both low levels and as clonal expansions, 3) low level mtDNA mutation frequency does not change significantly with age, suggesting that mtDNA mutation rate does not increase significantly with age, and 4) clonally expanded mtDNA mutations increase dramatically with age. These data confirm that clonal expansion of mtDNA mutations, some of which are generated very early in life, is the major driving force behind the mitochondrial dysfunction associated with ageing of the human colorectal epithelium.
Resumo:
In the last decade, a vast number of land surface schemes has been designed for use in global climate models, atmospheric weather prediction, mesoscale numerical models, ecological models, and models of global changes. Since land surface schemes are designed for different purposes they have various levels of complexity in the treatment of bare soil processes, vegetation, and soil water movement. This paper is a contribution to a little group of papers dealing with intercomparison of differently designed and oriented land surface schemes. For that purpose we have chosen three schemes for classification: i) global climate models, BATS (Dickinson et al., 1986; Dickinson et al., 1992); ii) mesoscale and ecological models, LEAF (Lee, 1992) and iii) mesoscale models, LAPS (Mihailović, 1996; Mihailović and Kallos, 1997; Mihailović et al., 1999) according to the Shao et al. (1995) classification. These schemes were compared using surface fluxes and leaf temperature outputs obtained by time integrations of data sets derived from the micrometeorological measurements above a maize field at an experimental site in De Sinderhoeve (The Netherlands) for 18 August, 8 September, and 4 October 1988. Finally, comparison of the schemes was supported applying a simple statistical analysis on the surface flux outputs.
Resumo:
We investigate the super-Brownian motion with a single point source in dimensions 2 and 3 as constructed by Fleischmann and Mueller in 2004. Using analytic facts we derive the long time behavior of the mean in dimension 2 and 3 thereby complementing previous work of Fleischmann, Mueller and Vogt. Using spectral theory and martingale arguments we prove a version of the strong law of large numbers for the two dimensional superprocess with a single point source and finite variance.
Resumo:
In the last decade, a vast number of land surface schemes has been designed for use in global climate models, atmospheric weather prediction, mesoscale numerical models, ecological models, and models of global changes. Since land surface schemes are designed for different purposes they have various levels of complexity in the treatment of bare soil processes, vegetation, and soil water movement. This paper is a contribution to a little group of papers dealing with intercomparison of differently designed and oriented land surface schemes. For that purpose we have chosen three schemes for classification: i) global climate models, BATS (Dickinson et al., 1986; Dickinson et al., 1992); ii) mesoscale and ecological models, LEAF (Lee, 1992) and iii) mesoscale models, LAPS (Mihailović, 1996; Mihailović and Kallos, 1997; Mihailović et al., 1999) according to the Shao et al. (1995) classification. These schemes were compared using surface fluxes and leaf temperature outputs obtained by time integrations of data sets derived from the micrometeorological measurements above a maize field at an experimental site in De Sinderhoeve (The Netherlands) for 18 August, 8 September, and 4 October 1988. Finally, comparison of the schemes was supported applying a simple statistical analysis on the surface flux outputs.
Resumo:
Fragaria vesca is a short-lived perennial with a seasonal-flowering habit. Seasonality of flowering is widespread in the Rosaceae and is also found in the majority of temperate polycarpic perennials. Genetic analysis has shown that seasonal flowering is controlled by a single gene in F. vesca, the SEASONAL FLOWERING LOCUS (SFL). Here, we report progress towards the marker-assisted selection and positional cloning of SFL, in which three ISSR markers linked to SFL were converted to locus-specific sequence-characterized amplified region (SCAR1–SCAR3) markers to allow large-scale screening of mapping progenies. We believe this is the first study describing the development of SCAR markers from ISSR profiles. The work also provides useful insight into the nature of polymorphisms generated by the ISSR marker system. Our results indicate that the ISSR polymorphisms originally detected were probably caused by point mutations in the positions targeted by primer anchors (causing differential PCR failure), by indels within the amplicon (leading to variation in amplicon size) and by internal sequence differences (leading to variation in DNA folding and so in band mobility). The cause of the original ISSR polymorphism was important in the selection of appropriate strategies for SCAR-marker development. The SCAR markers produced were mapped using a F. vesca f. vesca × F. vesca f. semperflorens testcross population. Marker SCAR2 was inseparable from the SFL, whereas SCAR1 mapped 3.0 cM to the north of the gene and SCAR3 1.7 cM to its south.
Resumo:
Mitochondrial DNA (mtDNA) mutations are an important cause of genetic disease and have been proposed to play a role in the ageing process. Quantification of total mtDNA mutation load in ageing tissues is difficult as mutational events are rare in a background of wild-type molecules, and detection of individual mutated molecules is beyond the sensitivity of most sequencing based techniques. The methods currently most commonly used to document the incidence of mtDNA point mutations in ageing include post-PCR cloning, single-molecule PCR and the random mutation capture assay. The mtDNA mutation load obtained by these different techniques varies by orders of magnitude, but direct comparison of the three techniques on the same ageing human tissue has not been performed. We assess the procedures and practicalities involved in each of these three assays and discuss the results obtained by investigation of mutation loads in colonic mucosal biopsies from ten human subjects.
Resumo:
The scarcity and stochastic nature of genetic mutations presents a significant challenge for scientists seeking to characterise de novo mutation frequency at specific loci. Such mutations can be particularly numerous during regeneration of plants from in vitro culture and can undermine the value of germplasm conservation efforts. We used cleaved amplified polymorphic sequence (CAPS) analysis to characterise new mutations amongst a clonal population of cocoa plants regenerated via a somatic embryogenesis protocol used previously for cocoa cryopreservation. Efficacy of the CAPS system for mutation detection was greatly improved after an ‘a priori’ in silico screen of reference target sequences for actual and potential restriction enzyme recognition sites using a new freely available software called Artbio. Artbio surveys known sequences for existing restriction enzyme recognition sites but also identifies all single nucleotide polymorphism (SNP) deviations from such motifs. Using this software, we performed an in silico screen of seven loci for restriction sites and their potential mutant SNP variants that were possible from 21 restriction enzymes. The four most informative locus-enzyme combinations were then used to survey the regenerant populations for de novo mutants. We characterised the pattern of point mutations and, using the outputs of Artbio, calculated the ratio of base substitution in 114 somatic embryo-derived cocoa regenerants originating from two explant genotypes. We found 49 polymorphisms, comprising 26.3% of the samples screened, with an inferred rate of 2.8 × 10−3 substitutions/screened base. This elevated rate is of a similar order of magnitude to previous reports of de novo microsatellite length mutations arising in the crop and suggests caution should be exercised when applying somatic embryogenesis for the conservation of plant germplasm.
Resumo:
We provide experimental evidence of a replication enhancer element (REE) within the capsid gene of tick-borne encephalitis virus (TBEV, genus Flavivirus). Thermodynamic and phylogenetic analyses predicted that the REE folds as a long stable stem–loop (designated SL6), conserved among all tick-borne flaviviruses (TBFV). Homologous sequences and potential base pairing were found in the corresponding regions of mosquito-borne flaviviruses, but not in more genetically distant flaviviruses. To investigate the role of SL6, nucleotide substitutions were introduced which changed a conserved hexanucleotide motif, the conformation of the terminal loop and the base-paired dsRNA stacking. Substitutions were made within a TBEV reverse genetic system and recovered mutants were compared for plaque morphology, single-step replication kinetics and cytopathic effect. The greatest phenotypic changes were observed in mutants with a destabilized stem. Point mutations in the conserved hexanucleotide motif of the terminal loop caused moderate virus attenuation. However, all mutants eventually reached the titre of wild-type virus late post-infection. Thus, although not essential for growth in tissue culture, the SL6 REE acts to up-regulate virus replication. We hypothesize that this modulatory role may be important for TBEV survival in nature, where the virus circulates by non-viraemic transmission between infected and non-infected ticks, during co-feeding on local rodents.
Resumo:
Mitochondrial DNA (mtDNA) mutations are an important cause of genetic disease and have been proposed to play a role in the ageing process. Quantification of total mtDNA mutation load in ageing tissues is difficult as mutational events are rare in a background of wild-type molecules, and detection of individual mutated molecules is beyond the sensitivity of most sequencing based techniques. The methods currently most commonly used to document the incidence of mtDNA point mutations in ageing include post-PCR cloning, single-molecule PCR and the random mutation capture assay. The mtDNA mutation load obtained by these different techniques varies by orders of magnitude, but direct comparison of the three techniques on the same ageing human tissue has not been performed. We assess the procedures and practicalities involved in each of these three assays and discuss the results obtained by investigation of mutation loads in colonic mucosal biopsies from ten human subjects.
Resumo:
Point mutations in LRRK2 cause autosomal dominant Parkinson's disease. Despite extensive efforts to determine the mechanism of cell death in patients with LRRK2 mutations, the aetiology of LRRK2 PD is not well understood. To examine possible alterations in gene expression linked to the presence of LRRK2 mutations, we carried out a case versus control analysis of global gene expression in three systems: fibroblasts isolated from LRRK2 mutation carriers and healthy, non-mutation carrying controls; brain tissue from G2019S mutation carriers and controls; and HEK293 inducible LRRK2 wild type and mutant cell lines. No significant alteration in gene expression was found in these systems following correction for multiple testing. These data suggest that any alterations in basal gene expression in fibroblasts or cell lines containing mutations in LRRK2 are likely to be quantitatively small. This work suggests that LRRK2 is unlikely to play a direct role in modulation of gene expression, although it remains possible that this protein can influence mRNA expression under pathogenic cicumstances.
Resumo:
A LightCycler-based PCR-hybridization gyrA mutation assay (GAMA) was developed to rapidly detect gyrA point mutations in multiresistant (MR) Salmonella enterica serotype Typhimurium DT104 with decreased susceptibility to ciprofloxacin (MIC, 0.25 to 1.0 mg/liter). Ninety-two isolates (49 human, 43 animal) were tested with three individual oligonucleotide probes directed against an Asp-87-to-Asn (GAC --> AAC) mutation, an Asp-87-to-Gly (GAC --> GGC) mutation, and a Ser-83-to-Phe (TCC --> TTC) mutation. Strains homologous to the probes could be distinguished from strains that had different mutations by their probe-target melting temperatures. Thirty-seven human and 30 animal isolates had an Asp-87-to-Asn substitution, 6 human and 6 animal isolates had a Ser-83-to-Phe substitution, and 5 human and 2 animal isolates had an Asp-87-to-Gly substitution. The remaining six strains all had mismatches with the three probes and therefore different gyrA mutations. The sequencing of gyrA from these six isolates showed that one human strain and two animal strains had an Asp-87-to-Tyr (GAC --> TAC) substitution and two animal strains had a Ser-83-to-Tyr (TCC --> TAC) substitution. One animal strain had no gyrA mutation, suggesting that this isolate had a different mechanism of resistance. Fifty-eight of the strains tested were indistinguishable by several different typing methods including antibiograms, pulsed-field gel gel electrophoresis, and plasmid profiling, although they could be further subdivided according to gyrA mutation. This study confirmed that MR DT104 with decreased susceptibility to ciprofloxacin from humans and food animals in England and Wales may have arisen independently against a background of clonal spread of MR DT104.
Resumo:
Objective: The effect of a single 5 day enrofloxacin treatment on the native Campylobacter coli population in conventionally weaned 5-week-old pigs was investigated. Materials: Twelve pigs were split into two groups of six: one group was treated with a therapeutic dose (15 mg/pig/day) of enrofloxacin and the other remained untreated to act as the control. Campylobacter coli were isolated from faecal samples and tested for ciprofloxacin resistance by measuring MIC values. Mutations in the quinolone resistance-determining region (QRDR) of the gyrA gene of resistant isolates were identified by sequencing and denaturing HPLC. Levels of enrofloxacin and its primary metabolite ciprofloxacin in the pig faeces were also measured by HPLC. Results: No quinolone-resistant C. coli (n = 867) were detected in any of the pigs prior to treatment, indicating <0.1% resistance in the group. Resistant C. coli were isolated from pigs for up to 35 days after treatment with a therapeutic dose. These resistant C. coli had MIC values of 128 mg/L and 8-16 mg/L for nalidixic acid and ciprofloxacin, respectively, and the same single point mutation causing a Thr-86 to Ile substitution in the QRDR was identified in each. The concentration of enrofloxacin in the pig faeces was 2-4 mug/g faeces for the duration of the 5 day therapeutic treatment and was detected up to 10 days post-treatment. Ciprofloxacin was also measured and peaked at 0.6 mug/g faeces in the treated group. Conclusion: This study provides evidence that a single course of enrofloxacin treatment contributes directly to the emergence and persistence of fluoroquinolone resistance in C. coli.
Resumo:
LRRK2 is one of the most important genetic contributors to Parkinson’s disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consis- tently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data high- light the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations.
Resumo:
Feeding damage to plants by insect herbivores induces the production of plant volatiles, which are attractive to the herbivores natural enemies. Little is understood about the plant biochemical pathways involved in aphid-induced plant volatile production. The aphid parasitoid Diaeretiella rapae can detect and respond to aphid-induced volatiles produced by Arabidopsis thaliana. When given experience of those volatiles, it can learn those cues and can therefore be used as a novel biosensor to detect them. The pathways involved in aphid-induced volatile production were investigated by comparing the responses of D. rapae to volatiles from a number of different transgenic mutants of A. thaliana, mutated in their octadecanoid, ethylene or salicylic acid wound-response pathways and also from wild-type plants. Plants were either undamaged or infested by the peach-potato aphid, Myzus persicae. It is demonstrated that the octadecanoid pathway and specifically the COI1 gene are required for aphid-induced volatile production. The presence of salicylic acid is also involved in volatile production. Using this model system, in combination with A. thaliana plants with single point gene mutations, has potential for the precise dissection of biochemical pathways involved in the production of aphid-induced volatiles