16 resultados para Simple Wave
em CentAUR: Central Archive University of Reading - UK
Resumo:
We report on a numerical study of the impact of short, fast inertia-gravity waves on the large-scale, slowly-evolving flow with which they co-exist. A nonlinear quasi-geostrophic numerical model of a stratified shear flow is used to simulate, at reasonably high resolution, the evolution of a large-scale mode which grows due to baroclinic instability and equilibrates at finite amplitude. Ageostrophic inertia-gravity modes are filtered out of the model by construction, but their effects on the balanced flow are incorporated using a simple stochastic parameterization of the potential vorticity anomalies which they induce. The model simulates a rotating, two-layer annulus laboratory experiment, in which we recently observed systematic inertia-gravity wave generation by an evolving, large-scale flow. We find that the impact of the small-amplitude stochastic contribution to the potential vorticity tendency, on the model balanced flow, is generally small, as expected. In certain circumstances, however, the parameterized fast waves can exert a dominant influence. In a flow which is baroclinically-unstable to a range of zonal wavenumbers, and in which there is a close match between the growth rates of the multiple modes, the stochastic waves can strongly affect wavenumber selection. This is illustrated by a flow in which the parameterized fast modes dramatically re-partition the probability-density function for equilibrated large-scale zonal wavenumber. In a second case study, the stochastic perturbations are shown to force spontaneous wavenumber transitions in the large-scale flow, which do not occur in their absence. These phenomena are due to a stochastic resonance effect. They add to the evidence that deterministic parameterizations in general circulation models, of subgrid-scale processes such as gravity wave drag, cannot always adequately capture the full details of the nonlinear interaction.
Resumo:
Pairs of counter-propagating Rossby waves (CRWs) can be used to describe baroclinic instability in linearized primitive-equation dynamics, employing simple propagation and interaction mechanisms at only two locations in the meridional plane—the CRW ‘home-bases’. Here, it is shown how some CRW properties are remarkably robust as a growing baroclinic wave develops nonlinearly. For example, the phase difference between upper-level and lower-level waves in potential-vorticity contours, defined initially at the home-bases of the CRWs, remains almost constant throughout baroclinic wave life cycles, despite the occurrence of frontogenesis and Rossby-wave breaking. As the lower wave saturates nonlinearly the whole baroclinic wave changes phase speed from that of the normal mode to that of the self-induced phase speed of the upper CRW. On zonal jets without surface meridional shear, this must always act to slow the baroclinic wave. The direction of wave breaking when a basic state has surface meridional shear can be anticipated because the displacement structures of CRWs tend to be coherent along surfaces of constant basic-state angular velocity, U. This results in up-gradient horizontal momentum fluxes for baroclinically growing disturbances. The momentum flux acts to shift the jet meridionally in the direction of the increasing surface U, so that the upper CRW breaks in the same direction as occurred at low levels
Resumo:
The scattering of small amplitude water waves by a finite array of locally axisymmetric structures is considered. Regions of varying quiescent depth are included and their axisymmetric nature, together with a mild-slope approximation, permits an adaptation of well-known interaction theory which ultimately reduces the problem to a simple numerical calculation. Numerical results are given and effects due to regions of varying depth on wave loading and free-surface elevation are presented.
Resumo:
In the Eady model, where the meridional potential vorticity (PV) gradient is zero, perturbation energy growth can be partitioned cleanly into three mechanisms: (i) shear instability, (ii) resonance, and (iii) the Orr mechanism. Shear instability involves two-way interaction between Rossby edge waves on the ground and lid, resonance occurs as interior PV anomalies excite the edge waves, and the Orr mechanism involves only interior PV anomalies. These mechanisms have distinct implications for the structural and temporal linear evolution of perturbations. Here, a new framework is developed in which the same mechanisms can be distinguished for growth on basic states with nonzero interior PV gradients. It is further shown that the evolution from quite general initial conditions can be accurately described (peak error in perturbation total energy typically less than 10%) by a reduced system that involves only three Rossby wave components. Two of these are counterpropagating Rossby waves—that is, generalizations of the Rossby edge waves when the interior PV gradient is nonzero—whereas the other component depends on the structure of the initial condition and its PV is advected passively with the shear flow. In the cases considered, the three-component model outperforms approximate solutions based on truncating a modal or singular vector basis.
Resumo:
We study certain boundary value problems for the one-dimensional wave equation posed in a time-dependent domain. The approach we propose is based on a general transform method for solving boundary value problems for integrable nonlinear PDE in two variables, that has been applied extensively to the study of linear parabolic and elliptic equations. Here we analyse the wave equation as a simple illustrative example to discuss the particular features of this method in the context of linear hyperbolic PDEs, which have not been studied before in this framework.
Resumo:
The technique of relaxation of the tropical atmosphere towards an analysis in a month-season forecast model has previously been successfully exploited in a number of contexts. Here it is shown that when tropical relaxation is used to investigate the possible origin of the observed anomalies in June–July 2007, a simple dynamical model is able to reproduce the observed component of the pattern of anomalies given by an ensemble of ECMWF forecast runs. Following this result, the simple model is used for a range of experiments on time-scales of relaxation, variables and regions relaxed based on a control model run with equatorial heating in a zonal flow. A theory based on scale analysis for the large-scale tropics is used to interpret the results. Typical relationships between scales are determined from the basic equations, and for a specified diabatic heating a chain of deductions for determining the dependent variables is derived. Different critical time-scales are found for tropical relaxation of different dependent variables to be effective. Vorticity has the longest critical time-scale, typically 1.2 days. For temperature and divergence, the time-scales are 10 hours and 3 hours, respectively. However not all the tropical fields, in particular the vertical motion, are reproduced correctly by the model unless divergence is heavily damped. To obtain the correct extra-tropical fields, it is crucial to have the correct rotational flow in the subtropics to initiate the Rossby wave propagation from there. It is sufficient to relax vorticity or temperature on a time-scale comparable or less than their critical time-scales to obtain this. However if the divergent advection of vorticity is important in the Rossby Wave Source then strong relaxation of divergence is required to accurately represent the tropical forcing of Rossby waves.
Resumo:
High-drag states produced in stratified flow over a 2D ridge and an axisymmetric mountain are investigated using a linear, hydrostatic, analytical model. A wind profile is assumed where the background velocity is constant up to a height z1 and then decreases linearly, and the internal gravity-wave solutions are calculated exactly. In flow over a 2D ridge, the normalized surface drag is given by a closed-form analytical expression, while in flow over an axisymmetric mountain it is given by an expression involving a simple 1D integral. The drag is found to depend on two dimensionless parameters: a dimensionless height formed with z_1, and the Richardson number, Ri, in the shear layer. The drag oscillates as z_1 increases, with a period of half the hydrostatic vertical wavelength of the gravity waves. The amplitude of this modulation increases as Ri decreases. This behaviour is due to wave reflection at z_1. Drag maxima correspond to constructive interference of the upward- and downward-propagating waves in the region z < z_1, while drag minima correspond to destructive interference. The reflection coefficient at the interface z = z_1 increases as Ri decreases. The critical level, z_c, plays no role in the drag amplification. A preliminary numerical treatment of nonlinear effects is presented, where z_c appears to become more relevant, and flow over a 2D ridge qualitatively changes its character. But these effects, and their connection with linear theory, still need to be better understood.
Resumo:
In this paper we use molecular dynamics to answer a classical question: how does the surface tension on a liquid/gas interface appear? After defining surface tension from the first principles and performing several consistency checks, we perform a dynamic experiment with a single simple liquid nanodroplet. At time zero, we remove all molecules of the interfacial layer of molecules, creating a fresh bare interface with the bulk arrangement of molecules. After that the system evolves towards equilibrium, and the expected surface tension is re-established. We found that the system relaxation consists of three distinct stages. First, the mechanical balance is quickly re-established. During this process the notion of surface tension is meaningless. In the second stage, the surface tension equilibrates, and the density profile broadens to a value which we call “intrinsic” interfacial width. During the third stage, the density profile continues to broaden due to capillary wave excitations, which does not however affect the surface tension.We have observed this scenario for monatomic Lennard-Jones (LJ) liquid as well as for binary LJ mixtures at different temperatures, monitoring a wide range of physical observables.
Resumo:
Climate models consistently predict a strengthened Brewer–Dobson circulation in response to greenhouse gas (GHG)-induced climate change. Although the predicted circulation changes are clearly the result of changes in stratospheric wave drag, the mechanism behind the wave-drag changes remains unclear. Here, simulations from a chemistry–climate model are analyzed to show that the changes in resolved wave drag are largely explainable in terms of a simple and robust dynamical mechanism, namely changes in the location of critical layers within the subtropical lower stratosphere, which are known from observations to control the spatial distribution of Rossby wave breaking. In particular, the strengthening of the upper flanks of the subtropical jets that is robustly expected from GHG-induced tropospheric warming pushes the critical layers (and the associated regions of wave drag) upward, allowing more wave activity to penetrate into the subtropical lower stratosphere. Because the subtropics represent the critical region for wave driving of the Brewer–Dobson circulation, the circulation is thereby strengthened. Transient planetary-scale waves and synoptic-scale waves generated by baroclinic instability are both found to play a crucial role in this process. Changes in stationary planetary wave drag are not so important because they largely occur away from subtropical latitudes.
Resumo:
Mesospheric temperature inversions are well established observed phenomena, yet their properties remain the subject of ongoing research. Comparisons between Rayleigh-scatter lidar temperature measurements obtained by the University of Western Ontario's Purple Crow Lidar (42.9°N, 81.4°W) and the Canadian Middle Atmosphere Model are used to quantify the statistics of inversions. In both model and measurements, inversions occur most frequently in the winter and exhibit an average amplitude of ∼10 K. The model exhibits virtually no inversions in the summer, while the measurements show a strongly reduced frequency of occurrence with an amplitude about half that in the winter. A simple theory of mesospheric inversions based on wave saturation is developed, with no adjustable parameters. It predicts that the environmental lapse rate must be less than half the adiabatic lapse rate for an inversion to form, and it predicts the ratio of the inversion amplitude and thickness as a function of environmental lapse rate. Comparison of this prediction to the actual amplitude/thickness ratio using the lidar measurements shows good agreement between theory and measurements.
Resumo:
Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of fundamental issues are examined in detail, with the goal of providing a better understanding of the mechanism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave–driven QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear zones and the development of the QBO. An important difference between the schemes for the two types of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below. This is in contrast to the parameterization for the equatorial planetary waves in which there is downward propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is permitted.
Resumo:
The slow advective-timescale dynamics of the atmosphere and oceans is referred to as balanced dynamics. An extensive body of theory for disturbances to basic flows exists for the quasi-geostrophic (QG) model of balanced dynamics, based on wave-activity invariants and nonlinear stability theorems associated with exact symmetry-based conservation laws. In attempting to extend this theory to the semi-geostrophic (SG) model of balanced dynamics, Kushner & Shepherd discovered lateral boundary contributions to the SG wave-activity invariants which are not present in the QG theory, and which affect the stability theorems. However, because of technical difficulties associated with the SG model, the analysis of Kushner & Shepherd was not fully nonlinear. This paper examines the issue of lateral boundary contributions to wave-activity invariants for balanced dynamics in the context of Salmon's nearly geostrophic model of rotating shallow-water flow. Salmon's model has certain similarities with the SG model, but also has important differences that allow the present analysis to be carried to finite amplitude. In the process, the way in which constraints produce boundary contributions to wave-activity invariants, and additional conditions in the associated stability theorems, is clarified. It is shown that Salmon's model possesses two kinds of stability theorems: an analogue of Ripa's small-amplitude stability theorem for shallow-water flow, and a finite-amplitude analogue of Kushner & Shepherd's SG stability theorem in which the ‘subsonic’ condition of Ripa's theorem is replaced by a condition that the flow be cyclonic along lateral boundaries. As with the SG theorem, this last condition has a simple physical interpretation involving the coastal Kelvin waves that exist in both models. Salmon's model has recently emerged as an important prototype for constrained Hamiltonian balanced models. The extent to which the present analysis applies to this general class of models is discussed.
Resumo:
A simple, dynamically consistent model of mixing and transport in Rossby-wave critical layers is obtained from the well-known Stewartson–Warn–Warn (SWW) solution of Rossby-wave critical-layer theory. The SWW solution is thought to be a useful conceptual model of Rossby-wave breaking in the stratosphere. Chaotic advection in the model is a consequence of the interaction between a stationary and a transient Rossby wave. Mixing and transport are characterized separately with a number of quantitative diagnostics (e.g. mean-square dispersion, lobe dynamics, and spectral moments), and with particular emphasis on the dynamics of the tracer field itself. The parameter dependences of the diagnostics are examined: transport tends to increase monotonically with increasing perturbation amplitude whereas mixing does not. The robustness of the results is investigated by stochastically perturbing the transient-wave phase speed. The two-wave chaotic advection model is contrasted with a stochastic single-wave model. It is shown that the effects of chaotic advection cannot be captured by stochasticity alone.
Resumo:
A reduced dynamical model is derived which describes the interaction of weak inertia–gravity waves with nonlinear vortical motion in the context of rotating shallow–water flow. The formal scaling assumptions are (i) that there is a separation in timescales between the vortical motion and the inertia–gravity waves, and (ii) that the divergence is weak compared to the vorticity. The model is Hamiltonian, and possesses conservation laws analogous to those in the shallow–water equations. Unlike the shallow–water equations, the energy invariant is quadratic. Nonlinear stability theorems are derived for this system, and its linear eigenvalue properties are investigated in the context of some simple basic flows.
Resumo:
This study describes a simple technique that improves a recently developed 3D sub-diffraction imaging method based on three-photon absorption of commercially available quantum dots. The method combines imaging of biological samples via tri-exciton generation in quantum dots with deconvolution and spectral multiplexing, resulting in a novel approach for multi-color imaging of even thick biological samples at a 1.4 to 1.9-fold better spatial resolution. This approach is realized on a conventional confocal microscope equipped with standard continuous-wave lasers. We demonstrate the potential of multi-color tri-exciton imaging of quantum dots combined with deconvolution on viral vesicles in lentivirally transduced cells as well as intermediate filaments in three-dimensional clusters of mouse-derived neural stem cells (neurospheres) and dense microtubuli arrays in myotubes formed by stacks of differentiated C2C12 myoblasts.