5 resultados para Significant mechanism
em CentAUR: Central Archive University of Reading - UK
Resumo:
The contrasting behaviour of westward-moving mixed Rossby-gravity (WMRG) and the first Rossby (R1) waves in El Niño (EN) and La Niña (LN) seasons is documented with a focus on the Northern Hemisphere winter. The eastward-moving variance in the upper troposphere is dominated by WMRG and R1 structures that appear to be Doppler-shifted by the flow and are referred to as WMRG-E and R1-E. In the East Pacific and Atlantic the years with stronger equatorial westerly winds have the stronger WMRG and WMRG- E. In the East Pacific, R1 is also a maximum in LN. However, R1-E exhibits an eastward-shift between LN and EN. The changes with ENSO phase provide a test-bed for the understanding of these waves. In the East Pacific and Atlantic, the stronger WMRG-E and WMRG with stronger westerlies are in accord with the dispersion relation with simple Doppler-shifting by the zonal flow. The possible existence of free waves can also explain stronger R1 in EN in the Eastern Hemisphere. 1-D free wave propagation theory based on wave activity conservation is also important for R1. However, this theory is unable to explain the amplitude maxima for other waves observed in the strong equatorial westerly regions in the Western Hemisphere, and certainly not their ENSO-related variation. The forcing of equatorial waves by higher latitude wave activity and its variation with ENSO phase is therefore examined. Propagation of extratropical eastward-moving Rossby wave activity through the westerly ducts into the equatorial region where it triggers WMRG-E is favoured in the stronger westerlies, in LN in the East Pacific and EN in the Atlantic. It is also found that WMRG is forced by Southern Hemisphere westward-moving wavetrains arching into the equatorial region where they are reflected. The most significant mechanism for both R1 and R1-E appear to be lateral forcing by subtropical wavetrains.
Resumo:
Examination of conditional instability of the second kind (CISK) and wind-induced surface heat exchange (WISHE), two proposed mechanisms for tropical cyclone and polar low intensification, suggests that the sensitivity of the intensification rate of these disturbances to surface properties, such as surface friction and moisture supply, will be different for the two mechanisms. These sensitivities were examined by perturbing the surface characteristics in a numerical model with explicit convection. The intensification rate was found to have a strong positive dependence on the heat and moisture transfer coefficients, while remaining largely insensitive to the frictional drag coefficient. CISK does not predict the observed dependence of vortex intensification rate on the heat and moisture transfer coefficients, nor the insensitivity to the frictional drag coefficient since it anticipates that intensification rate is controlled by frictional convergence in the boundary layer. Since neither conditional instability nor boundary moisture content showed any significant sensitivity to the transfer coefficients, this is true of CISK using both the convective closures of Ooyama and of Charney and Eliassen. In comparison, the WISHE intensification mechanism does predict the observed increase in intensification rate with heat and moisture transfer coefficients, while not anticipating a direct influence from surface friction.
Resumo:
Adult skeletal muscle possesses a resident stem cell population called satellite cells which are responsible for tissue repair following damage. Satellite cell migration is crucial in promoting rapid tissue regeneration but is a poorly understood process. Furthermore, the mechanisms facilitating satellite cell movement have yet to be elucidated. Here the process of satellite cell migration has been investigated revealing that they undergo two distinct phases of movement; firstly under the basal lamina and then rapidly increasing their velocity when on the myofibre surface. Most significantly we show that satellite cells move using a highly dynamic blebbing based mechanism and not via lamellopodia mediated propulsion. We show that nitric oxide and non-canonical Wnt signalling pathways are necessary for regulating the formation of blebs and the migration of satellite cells. In summary, we propose that the formation of blebs and their necessity for satellite cell migration has significant implications in the future development of therapeutic regimes aimed at promoting skeletal muscle regeneration.
Resumo:
Aims: To investigate the effect of the oxidative stress of ozone on the microbial inactivation, cell membrane integrity and permeability and morphology changes of Escherichia coli. Methods and Results: Escherichia coli BW 25113 and its isogenic mutants in soxR, soxS, oxyR, rpoS and dnaK genes were treated with ozone at a concentration of 6 lg ml)1 for a period up to 240 s. A significant effect of ozone exposure on microbial inactivation was observed. After ozonation, minor effects on the cell membrane integrity and permeability were observed, while scanning electron microscopy analysis showed slightly altered cell surface structure. Conclusions: The results of this study suggest that cell lysis was not the major mechanism of microbial inactivation. The deletion of oxidative stress–related genes resulted in increased susceptibility of E. coli cells to ozone treatment, implying that they play an important role for protection against the radicals produced by ozone. However, DnaK that has previously been shown to protect against oxidative stress did not protect against ozone treatment in this study. Furthermore, RpoS was important for the survival against ozone. Significance and Impact of the Study: This study provides important information about the role of oxidative stress in the responses of E. coli during ozonation.
Resumo:
BACKGROUND AND PURPOSE Epilepsy is the most prevalent neurological disease and is characterized by recurrent seizures. Here, we investigate (i) the anticonvulsant profiles of cannabis-derived botanical drug substances (BDSs) rich in cannabidivarin (CBDV) and containing cannabidiol (CBD) in acute in vivo seizure models and (ii) the binding of CBDV BDSs and their components at cannabinoid CB 1 receptors. EXPERIMENTAL APPROACH The anticonvulsant profiles of two CBDV BDSs (50–422 mg·kg −1 ) were evaluated in three animal models of acute seizure. Purified CBDV and CBD were also evaluated in an isobolographic study to evaluate potential pharmacological interactions. CBDV BDS effects on motor function were also investigated using static beam and grip strength assays. Binding of CBDV BDSs to cannabinoid CB 1 receptors was evaluated using displacement binding assays. KEY RESULTS CBDV BDSs exerted significant anticonvulsant effects in the pentylenetetrazole (≥100 mg·kg −1 ) and audiogenic seizure models (≥87 mg·kg −1 ), and suppressed pilocarpine-induced convulsions (≥100 mg·kg −1 ). The isobolographic study revealed that the anticonvulsant effects of purified CBDV and CBD were linearly additive when co-administered. Some motor effects of CBDV BDSs were observed on static beam performance; no effects on grip strength were found. The Δ 9 -tetrahydrocannabinol and Δ 9 -tetrahydrocannabivarin content of CBDV BDS accounted for its greater affinity for CB 1 cannabinoid receptors than purified CBDV. CONCLUSIONS AND IMPLICATIONS CBDV BDSs exerted significant anticonvulsant effects in three models of seizure that were not mediated by the CB 1 cannabinoid receptor and were of comparable efficacy with purified CBDV. These findings strongly support the further clinical development of CBDV BDSs for the treatment of epilepsy.