27 resultados para Short Bowel Syndrome
em CentAUR: Central Archive University of Reading - UK
Resumo:
Gut microflora-mucosal interactions may be involved in the pathogenesis of irritable bowel syndrome (IBS). To investigate the efficacy of a novel prebiotic trans-galactooligosaccharide in changing the colonic microflora and improve the symptoms in IBS sufferers. In all, 44 patients with Rome II positive IBS completed a 12-week single centre parallel crossover controlled clinical trial. Patients were randomized to receive either 3.5 g/d prebiotic, 7 g/d prebiotic or 7 g/d placebo. IBS symptoms were monitored weekly and scored according to a 7-point Likert scale. Changes in faecal microflora, stool frequency and form (Bristol stool scale) subjective global assessment (SGA), anxiety and depression and QOL scores were also monitored. The prebiotic significantly enhanced faecal bifidobacteria (3.5 g/d P < 0.005; 7 g/d P < 0.001). Placebo was without effect on the clinical parameters monitored, while the prebiotic at 3.5 g/d significantly changed stool consistency (P < 0.05), improved flatulence (P < 0.05) bloating (P < 0.05), composite score of symptoms (P < 0.05) and SGA (P < 0.05). The prebiotic at 7 g/d significantly improved SGA (P < 0.05) and anxiety scores (P < 0.05). The galactooligosaccharide acted as a prebiotic in specifically stimulating gut bifidobacteria in IBS patients and is effective in alleviating symptoms. These findings suggest that the prebiotic has potential as a therapeutic agent in IBS.
Resumo:
Objectives: Does artichoke leaf extract (ALE) ameliorate symptoms of Irritable bowel syndrome (IBS) in otherwise healthy volunteers suffering concomitant dyspepsia? Methods: A subset analysis of a previous dose-ranging, open, postal study, in adults suffering dyspepsia. Two hundred and eight (208) adults were identified post hoc as suffering with IBS. IBS incidence, self-reported usual bowel pattern, and the Nepean Dyspepsia Index (NDI) were compared before and after a 2-month intervention period. Results: There was a significant fall in IBS incidence of 26.4% (p<0.001) after treatment. A significant shift in self-reported usual bowel pattern away from "alternating constipation/diarrhea" toward "normal" (p<0.001) was observed. NDI total symptom score significantly decreased by 41% (p<0.001) after treatment. Similarly, there was a significant 20% improvement in the NDI total quality-of-life (QOL) score in the subset after treatment. Conclusion: This report supports previous findings that ALE ameliorates symptoms of IBS, plus improves health-related QOL.
Resumo:
Objectives: To assess the effects of turmeric (Curcuma longa) extract on irritable bowel syndrome (IBS) symptomology in otherwise healthy adults. Design: Partially blinded, randomized, two-dose, pilot study. Subjects: Five hundred (500) volunteers were screened for IBS using the Rome II criteria. Two hundred and seven (207) suitable volunteers were randomized. Interventions: One or two tablets of a standardized turmeric extract taken daily for 8 weeks. Outcomes measures: IBS prevalence, symptom-related quality of life (IBSQOL) and self-reported effectiveness. Results: IBS prevalence decreased significantly in both groups between screening and baseline (41% and 57%), with a further significant drop of 53% and 60% between baseline and after treatment, in the one- and two-tablet groups respectively (p < 0.001). A post-study analysis revealed abdominal pain/discomfort score reduced significantly by 22% and 25% in the one- and two-tablet group respectively, the difference tending toward significance (p = 0.071). There were significant improvements in all bar one of the IBSQOL scales of between 5% and 36% in both groups, approximately two thirds of all subjects reported an improvement in symptoms after treatment, and there was a favorable shift in self-reported bowel pattern. There were no significant differences between groups. Conclusions: Turmeric may help reduce IBS symptomology. Placebo controlled trials are now warranted to confirm these findings.
Resumo:
Mediators involved in the generation of symptoms in patients with irritable bowel syndrome (IBS) are poorly understood. Here we show that colonic biopsy samples from IBS patients release increased levels of proteolytic activity (arginine cleavage) compared to asymptomatic controls. This was dependent on the activation of NF-kappaB. In addition, increased proteolytic activity was measured in vivo, in colonic washes from IBS compared with control patients. Trypsin and tryptase expression and release were increased in colonic biopsies from IBS patients compared with control subjects. Biopsies from IBS patients (but not controls) released mediators that sensitized murine sensory neurons in culture. Sensitization was prevented by a serine protease inhibitor and was absent in neurons lacking functional protease-activated receptor-2 (PAR2). Supernatants from colonic biopsies of IBS patients, but not controls, also caused somatic and visceral hyperalgesia and allodynia in mice, when administered into the colon. These pronociceptive effects were inhibited by serine protease inhibitors and a PAR2 antagonist and were absent in PAR2-deficient mice. Our study establishes that proteases are released in IBS and that they can directly stimulate sensory neurons and generate hypersensitivity symptoms through the activation of PAR2.
Resumo:
BACKGROUND & AIMS: The mechanisms underlying abdominal pain perception in irritable bowel syndrome (IBS) are poorly understood. Intestinal mast cell infiltration may perturb nerve function leading to symptom perception. We assessed colonic mast cell infiltration, mediator release, and spatial interactions with mucosal innervation and their correlation with abdominal pain in IBS patients. METHODS: IBS patients were diagnosed according to Rome II criteria and abdominal pain quantified according to a validated questionnaire. Colonic mucosal mast cells were identified immunohistochemically and quantified with a computer-assisted counting method. Mast cell tryptase and histamine release were analyzed immunoenzymatically. Intestinal nerve to mast cell distance was assessed with electron microscopy. RESULTS: Thirty-four out of 44 IBS patients (77%) showed an increased area of mucosa occupied by mast cells as compared with controls (9.2% +/- 2.5% vs. 3.3 +/- 0.8%, respectively; P < 0.001). There was a 150% increase in the number of degranulating mast cells (4.76 +/- 3.18/field vs. 2.42 +/- 2.26/field, respectively; P = 0.026). Mucosal content of tryptase was increased in IBS and mast cells spontaneously released more tryptase (3.22 +/- 3.48 pmol/min/mg vs. 0.87 +/- 0.65 pmol/min/mg, respectively; P = 0.015) and histamine (339.7 +/- 59.0 ng/g vs. 169.3 +/- 130.6 ng/g, respectively; P = 0.015). Mast cells located within 5 microm of nerve fibers were 7.14 +/- 3.87/field vs. 2.27 +/- 1.63/field in IBS vs. controls (P < 0.001). Only mast cells in close proximity to nerves were significantly correlated with severity and frequency of abdominal pain/discomfort (P < 0.001 and P = 0.003, respectively). CONCLUSIONS: Colonic mast cell infiltration and mediator release in proximity to mucosal innervation may contribute to abdominal pain perception in IBS patients.
Resumo:
A variety of foods have been implicated in symptoms of patients with Irritable Bowel Syndrome (IBS) but wheat products are most frequently cited by patients as a trigger. Our aim was to investigate the effects of breads, which were fermented for different lengths of time, on the colonic microbiota using in vitro batch culture experiments. A set of in vitro anaerobic culture systems were run over a period of 24 h using faeces from 3 different IBS donors (Rome Criteria–mainly constipated) and 3 healthy donors. Changes in gut microbiota during a time course were identified by fluorescence in situ hybridisation (FISH), whilst the small -molecular weight metabolomic profile was determined by NMR analysis. Gas production was separately investigated in non pH-controlled, 36 h batch culture experiments. Numbers of bifidobacteria were higher in healthy subjects compared to IBS donors. In addition, the healthy donors showed a significant increase in bifidobacteria (P<0.005) after 8 h of fermentation of a bread produced using a sourdough process (type C) compared to breads produced with commercial yeasted dough (type B) and no time fermentation (Chorleywood Breadmaking process) (type A). A significant decrease of δ-Proteobacteria and most Gemmatimonadetes species was observed after 24 h fermentation of type C bread in both IBS and healthy donors. In general, IBS donors showed higher rates of gas production compared to healthy donors. Rates of gas production for type A and conventional long fermentation (type B) breads were almost identical in IBS and healthy donors. Sourdough bread produced significantly lower cumulative gas after 15 h fermentation as compared to type A and B breads in IBS donors but not in the healthy controls. In conclusion, breads fermented by the traditional long fermentation and sourdough are less likely to lead to IBS symptoms compared to bread made using the Chorleywood Breadmaking Process.
Resumo:
The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, 'normobiosis' characterises a composition of the gut 'ecosystem' in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to 'dysbiosis', in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in 'prebiotic effects'), defined as: 'The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.' Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.
Resumo:
Chemostat culture was used to determine the effects of the antimicrobial agents tetracycline and nystatin on predominant components of the human gut microflora. Their addition to mixed culture systems caused a non-specific, and variable, decrease in microbial populations, although tetracycline allowed an increase in numbers of yeasts. Both had a profound inhibitory effect upon populations seen as important for gut health (bifidobacteria, lactobacilli). However, a tetracycline resistant Lactobacillus was enriched from the experiments. A combination of genotypic and phenotypic characterisations confirmed its identity as Lactobacillus plantarum. This strain exerted powerful inhibitory effects against Candida albicans. Because of its ability to resist the effects of tetracycline, this organism may be useful as a probiotic for the improved management of yeast related conditions such as thrush and irritable bowel syndrome. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Functional foods such as probiotics, prebiotics and nutraceuticals are of extreme interest to researchers. There is growing evidence that these food ingredients may improve and in some cases treat certain conditions that are implicated in women's health. The use of probiotics (live, beneficial bacteria) in improving gastrointestinal and non-gastrointestinal tract conditions such as irritable bowel syndrome, candidiasis and other female urogenital tract conditions are reviewed. Emphasis is also given to the importance of prebiotics (non-digestible food ingredients) in osteoporosis management and alleviation of menopausal symptoms and reducing the onset of cancer.
Resumo:
The inaugural meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) was held May 3 to May 5 2002 in London, Ontario, Canada. A group of 63 academic and industrial scientists from around the world convened to discuss current issues in the science of probiotics and prebiotics. ISAPP is a non-profit organization comprised of international scientists whose intent is to strongly support and improve the levels of scientific integrity and due diligence associated with the study, use, and application of probiotics and prebiotics. In addition, ISAPP values its role in facilitating communication with the public and healthcare providers and among scientists in related fields on all topics pertinent to probiotics and prebiotics. It is anticipated that such efforts will lead to development of approaches and products that are optimally designed for the improvement of human and animal health and well being. This article is a summary of the discussions, conclusions, and recommendations made by 8 working groups convened during the first ISAPP workshop focusing on the topics of: definitions, intestinal flora, extra-intestinal sites, immune function, intestinal disease, cancer, genetics and genomics, and second generation prebiotics. Humans have evolved in symbiosis with an estimated 1014 resident microorganisms. However, as medicine has widely defined and explored the perpetrators of disease, including those of microbial origin, it has paid relatively little attention to the microbial cells that constitute the most abundant life forms associated with our body. Microbial metabolism in humans and animals constitutes an intense biochemical activity in the body, with profound repercussions for health and disease. As understanding of the human genome constantly expands, an important opportunity will arise to better determine the relationship between microbial populations within the body and host factors (including gender, genetic background, and nutrition) and the concomitant implications for health and improved quality of life. Combined human and microbial genetic studies will determine how such interactions can affect human health and longevity, which communication systems are used, and how they can be influenced to benefit the host. Probiotics are defined as live microorganisms which, when administered in adequate amounts confer a health benefit on the host.1 The probiotic concept dates back over 100 years, but only in recent times have the scientific knowledge and tools become available to properly evaluate their effects on normal health and well being, and their potential in preventing and treating disease. A similar situation exists for prebiotics, defined by this group as non-digestible substances that provide a beneficial physiological effect on the host by selectively stimulating the favorable growth or activity of a limited number of indigenous bacteria. Prebiotics function complementary to, and possibly synergistically with, probiotics. Numerous studies are providing insights into the growth and metabolic influence of these microbial nutrients on health. Today, the science behind the function of probiotics and prebiotics still requires more stringent deciphering both scientifically and mechanistically. The explosion of publications and interest in probiotics and prebiotics has resulted in a body of collective research that points toward great promise. However, this research is spread among such a diversity of organisms, delivery vehicles (foods, pills, and supplements), and potential health targets such that general conclusions cannot easily be made. Nevertheless, this situation is rapidly changing on a number of important fronts. With progress over the past decade on the genetics of lactic acid bacteria and the recent, 2,3 and pending, 4 release of complete genome sequences for major probiotic species, the field is now armed with detailed information and sophisticated microbiological and bioinformatic tools. Similarly, advances in biotechnology could yield new probiotics and prebiotics designed for enhanced or expanded functionality. The incorporation of genetic tools within a multidisciplinary scientific platform is expected to reveal the contributions of commensals, probiotics, and prebiotics to general health and well being and explicitly identify the mechanisms and corresponding host responses that provide the basis for their positive roles and associated claims. In terms of human suffering, the need for effective new approaches to prevent and treat disease is paramount. The need exists not only to alleviate the significant mortality and morbidity caused by intestinal diseases worldwide (especially diarrheal diseases in children), but also for infections at non-intestinal sites. This is especially worthy of pursuit in developing nations where mortality is too often the outcome of food and water borne infection. Inasmuch as probiotics and prebiotics are able to influence the populations or activities of commensal microflora, there is evidence that they can also play a role in mitigating some diseases. 5,6 Preliminary support that probiotics and prebiotics may be useful as intervention in conditions including inflammatory bowel disease, irritable bowel syndrome, allergy, cancer (especially colorectal cancer of which 75% are associated with diet), vaginal and urinary tract infections in women, kidney stone disease, mineral absorption, and infections caused by Helicobacter pylori is emerging. Some metabolites of microbes in the gut may also impact systemic conditions ranging from coronary heart disease to cognitive function, suggesting the possibility that exogenously applied microbes in the form of probiotics, or alteration of gut microecology with prebiotics, may be useful interventions even in these apparently disparate conditions. Beyond these direct intervention targets, probiotic cultures can also serve in expanded roles as live vehicles to deliver biologic agents (vaccines, enzymes, and proteins) to targeted locations within the body. The economic impact of these disease conditions in terms of diagnosis, treatment, doctor and hospital visits, and time off work exceeds several hundred billion dollars. The quality of life impact is also of major concern. Probiotics and prebiotics offer plausible opportunities to reduce the morbidity associated with these conditions. The following addresses issues that emerged from 8 workshops (Definitions, Intestinal Flora, Extra-Intestinal Sites, Immune Function, Intestinal Disease, Cancer, Genomics, and Second Generation Prebiotics), reflecting the current scientific state of probiotics and prebiotics. This is not a comprehensive review, however the study emphasizes pivotal knowledge gaps, and recommendations are made as to the underlying scientific and multidisciplinary studies that will be required to advance our understanding of the roles and impact of prebiotics, probiotics, and the commensal microflora upon health and disease management.
Resumo:
Although practitioner-prescribed 'western' herbal medicine (phytotherapy) is a popular complementary therapy in the UK, no clinical studies have been reported on patient-orientated outcomes. The objective of this pilot study was to investigate the effects of phytotherapy on symptoms of osteoarthritis of the knee. A previous study of Chinese herbal medicine for the treatment of irritable bowel syndrome, published in the Journal of the American Medical Association,(1) acted as a model in the development of the protocol of this investigation. Twenty adults, previously diagnosed with osteoarthritis of the knee, were recruited from two Inner London GP practices into this randomized, double-blind, placebo-controlled, pilot study carried out in a primary-care setting. All subjects were seen in consultation three times by a herbal practitioner who was blinded to the randomization coding. Each subject was prescribed treatment and given lifestyle advice according to usual practice: continuation of conventional medication where applicable, healthy-eating advice and nutrient supplementation, Individualized herbal medicine was prescribed for each patient, but only dispensed for those randomized to active treatment - the remainder were supplied with a placebo. At baseline and outcome (after ten weeks of treatment), subjects completed a food frequency questionnaire and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) knee health and Measure Yourself Outcome Profile (MYMOP) wellbeing questionnaires. Subjects completing the study per protocol (n = 14) reported an increased intake of wholegrain foods (p = 0.045) and oily fish (p = 0.039) compared to baseline, but no increase in fruit and vegetables and dairy products intakes. There was no difference in the primary outcome measure of knee health assessed as the difference in the mean response (baseline-week 10) in WOMAC score between the two treatment groups. However, there was, compared with baseline, improvement in the active group (n = 9) for the mean WOMAC stiffness sub-score at week 5 (p = 0.035) and week 10 (p = 0.060) but not in the placebo group (n = 5). Furthermore, for the active, but not the placebo group, the mean WOMAC total and sub-scores all showed clinically significant improvement (>= 20%) in knee symptoms at weeks 5 and 10 compared with baseline. Moreover, the mean MYMOP symptom 2 sub-score, mostly relating to osteoarthritis (OA), showed significant improvement at week 5 (p = 0.02) and week 10 (p = 0.008) compared with baseline for the active, but not for the placebo group. This pilot study showed that herbal medicine prescribed for the individual by a herbal practitioner resulted in improvement of symptoms of OA of the knee.
Resumo:
The burden (economic and medicinal) of acute and chronic gut disorders continues to increase. As efficient therapies are few, attention has turned towards the use of so-called functional foods to mediate against gut disorder. These target particular genera of gut bacteria seen as beneficial, e.g. bifidobacteria, lactobacilli. The use of products containing live microbial species (probiotics) has a long history of use in humans and many trials have been reported as 'positive'. Taking the view that positive components of the gut flora already exist in the intestinal tract, the prebiotic concept has been developed. Here, dietary carbohydrates have a selective metabolism within the gut flora thereby shifting the community towards a more advantageous structure. Conventional fibres like pectins, cellulose, etc. are not selectively metabolised by gut bacteria. However, certain oligosaccharides do have this capability. Most research has been conducted with fructooligosaccharides, like inulin, which have a powerful bifidogenic effect. Trials are ongoing to determine the clinical benefits of prebiotic use. Intestinal disorders like ulcerative colitis, gastroenteritis and irritable bowel syndrome are particular targets. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Endogenous formation of N-nitroso compounds (NOCs), which are known animal carcinogens, could contribute to human carcinogenesis but definitive evidence is still lacking. To investigate the relevance of NOCs in human colorectal cancer (CRC) development, we analyzed whole genome gene expression modifications in human colon biopsies in relation to fecal NOC exposure. We had a particular interest in patients suffering from intestinal inflammation as this may stimulate endogenous NOC formation, and consequently predispose to CRC risk. Inflammatory bowel disease (IBD) patients diagnosed with ulcerative colitis and irritable bowel syndrome patients without inflammation, serving as controls, were therefore recruited. Fecal NOC were demonstrated in the majority of subjects. By associating gene expression levels of all subjects to fecal NOC levels, we identified a NOC exposure-associated transcriptomic response that suggests that physiological NOC concentrations may potentially induce genotoxic responses and chromatin modifications in human colon tissue, both of which are linked to carcinogenicity. In a network analysis, chromatin modifications were linked to 11 significantly modulated histone genes, pointing towards a possible epigenetic mechanism that may be relevant in comprehending NOC-induced carcinogenesis. In addition, pro-inflammatory transcriptomic modifications were identified in visually non-inflamed regions of the IBD colon. However, fecal NOC levels were slightly but not significantly increased in IBD patients, suggesting that inflammation did not strongly stimulate NOC formation. We conclude that NOC exposure is associated with gene expression modifications in the human colon that may suggest a potential role of these compounds in CRC development.
Resumo:
PURPOSE: Most studies on probiotics utilise single strains, sometimes incorporated into yoghurts. There are fewer studies on efficacy of mixtures of probiotic strains. This review examines the evidence that (a) probiotic mixtures are beneficial for a range of health-related outcomes and (b) mixtures are more or less effective than their component strains administered separately. RESULTS: Mixtures of probiotics had beneficial effects on the end points including irritable bowel syndrome and gut function, diarrhoea, atopic disease, immune function and respiratory tract infections, gut microbiota modulation, inflammatory bowel disease and treatment of Helicobacter pylori infection. However, only 16 studies compared the effect of a mixture with that of its component strains separately, although in 12 cases (75%), the mixture was more effective. CONCLUSION: Probiotic mixtures appear to be effective against a wide range of end points. Based on a limited number of studies, multi-strain probiotics appear to show greater efficacy than single strains, including strains that are components of the mixtures themselves. However, whether this is due to synergistic interactions between strains or a consequence of the higher probiotic dose used in some studies is at present unclear.
Resumo:
The present paper summarizes the consensus views of a group of 9 European clinicians and scientists on the current state of scientific knowledge on probiotics, covering those areas where there is substantial evidence for beneficial effects and those where the evidence base is poor or inconsistent. There was general agreement that probiotic effects were species and often strain specific. The experts agreed that some probiotics were effective in reducing the incidence and duration of rotavirus diarrhoea in infants, antibiotic-associated diarrhoea in adults and, for certain probiotics, Clostridium difficile infections. Some probiotics are associated with symptomatic improvements in irritable bowel syndrome and alleviation of digestive discomfort. Probiotics can reduce the frequency and severity of necrotizing enterocolitis in premature infants and have been shown to regulate intestinal immunity. Several other clinical effects of probiotics, including their role in inflammatory bowel disease, atopic dermatitis, respiratory or genito-urinary infections or H.pylori adjuvant treatment were thought promising but inconsistent.