37 resultados para Shock-capturing
em CentAUR: Central Archive University of Reading - UK
Resumo:
A shock capturing scheme is presented for the equations of isentropic flow based on upwind differencing applied to a locally linearized set of Riemann problems. This includes the two-dimensional shallow water equations using the familiar gas dynamics analogy. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency, leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver where the computational expense can be prohibitive. The scheme is applied to a two-dimensional dam-break problem and the approximate solution compares well with those given by other authors.
Resumo:
An efficient algorithm is presented for the solution of the steady Euler equations of gas dynamics. The scheme is based on solving linearised Riemann problems approximately and in more than one dimension incorporates operator splitting. The scheme is applied to a standard test problem of flow down a channel containing a circular arc bump for three different mesh sizes.
Resumo:
A numerical scheme is presented for the solution of the Euler equations of compressible flow of a gas in a single spatial co-ordinate. This includes flow in a duct of variable cross-section as well as flow with slab, cylindrical or spherical symmetry and can prove useful when testing codes for the two-dimensional equations governing compressible flow of a gas. The resulting scheme requires an average of the flow variables across the interface between cells and for computational efficiency this average is chosen to be the arithmetic mean, which is in contrast to the usual ‘square root’ averages found in this type of scheme. The scheme is applied with success to five problems with either slab or cylindrical symmetry and a comparison is made in the cylindrical case with results from a two-dimensional problem with no sources.
Resumo:
Abstract A finite difference scheme is presented for the solution of the two-dimensional shallow water equations in steady, supercritical flow. The scheme incorporates numerical characteristic decomposition, is shock capturing by design and incorporates space-marching as a result of the assumption that the flow is wholly supercritical in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.
Resumo:
A finite difference scheme is presented for the solution of the two-dimensional equations of steady, supersonic, isentropic flow. The scheme incorporates numerical characteristic decomposition, is shock-capturing by design and incorporates space marching as a result of the assumption that the flow is wholly supersonic in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.
Resumo:
An efficient algorithm based on flux difference splitting is presented for the solution of the three-dimensional equations of isentropic flow in a generalised coordinate system, and with a general convex gas law. The scheme is based on solving linearised Riemann problems approximately and in more than one dimension incorporates operator splitting. The algorithm requires only one function evaluation of the gas law in each computational cell. The scheme has good shock capturing properties and the advantage of using body-fitted meshes. Numerical results are shown for Mach 3 flow of air past a circular cylinder. Furthermore, the algorithm also applies to shallow water flows by employing the familiar gas dynamics analogy.
Resumo:
A finite difference scheme is presented for the solution of the two-dimensional equations of steady, supersonic, compressible flow of real gases. The scheme incorparates numerical characteristic decomposition, is shock-capturing by design and incorporates space-marching as a result of the assumption that the flow is wholly supersonic in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.
Resumo:
Recent coordinated observations of interplanetary scintillation (IPS) from the EISCAT, MERLIN, and STELab, and stereoscopic white-light imaging from the two heliospheric imagers (HIs) onboard the twin STEREO spacecraft are significant to continuously track the propagation and evolution of solar eruptions throughout interplanetary space. In order to obtain a better understanding of the observational signatures in these two remote-sensing techniques, the magnetohydrodynamics of the macro-scale interplanetary disturbance and the radio-wave scattering of the micro-scale electron-density fluctuation are coupled and investigated using a newly constructed multi-scale numerical model. This model is then applied to a case of an interplanetary shock propagation within the ecliptic plane. The shock could be nearly invisible to an HI, once entering the Thomson-scattering sphere of the HI. The asymmetry in the optical images between the western and eastern HIs suggests the shock propagation off the Sun–Earth line. Meanwhile, an IPS signal, strongly dependent on the local electron density, is insensitive to the density cavity far downstream of the shock front. When this cavity (or the shock nose) is cut through by an IPS ray-path, a single speed component at the flank (or the nose) of the shock can be recorded; when an IPS ray-path penetrates the sheath between the shock nose and this cavity, two speed components at the sheath and flank can be detected. Moreover, once a shock front touches an IPS ray-path, the derived position and speed at the irregularity source of this IPS signal, together with an assumption of a radial and constant propagation of the shock, can be used to estimate the later appearance of the shock front in the elongation of the HI field of view. The results of synthetic measurements from forward modelling are helpful in inferring the in-situ properties of coronal mass ejection from real observational data via an inverse approach.
Resumo:
This article examines shock persistence in agricultural and industrial output in India. Drawing on the dual economy literature, the linkages between the sectors through the terms of trade are emphasised. However different dual economy models make differing assumptions regarding the categorisation of variables as being either endogenous or exogenous and this distinction is crucial in explaining the pattern of shock persistence. Using annual data for 1955-95, our results show that shocks to both output series are permanent while those to the terms of trade are transient.
Resumo:
It is demonstrated that monodisperse magnetic FePt nanoparticle can be engineered into a protective dense silica layer, followed by concentric outer mesoporous silica layers with tailored -SH, -SO3H and -NH2 surface groups, these new materials can be used to capture heavy metal ions and DNA molecules from solution specifically by their internal or/and external functionalised surfaces by magnetic means.
Resumo:
We have developed a general method for multiplexed quantitative proteomics using differential metabolic stable isotope labeling and mass spectrometry. The method was successfully used to study the dynamics of heat-shock response in Arabidopsis thaliana. A number of known heat-shock proteins were confirmed, and some proteins not previously associated with heat shock were discovered. The method is applicable in stable isotope labeling and allows for high degrees of multiplexing.