6 resultados para Sheep model
em CentAUR: Central Archive University of Reading - UK
Resumo:
Ruminants are regarded as a primary reservoir for Escherichia coli O157:H7, an important human pathogen. Intimin, encoded by the Locus of Enterocyte Effacement by E. coli O157:H7 organisms, has been cited as one bacterial mechanism of colonisation of the gastrointestinal tract. To confirm this and to test whether a non-toxigenic E. coli O157:H7 strain would colonise and persist in a sheep model, E. coli O157:H7 strain NCTC12900, that lacks Shiga toxin (stx) genes, was evaluated for use in a sheep model of persistence. Following oral inoculation of six-week-old sheep, persistent excretion of NCTC12900 was observed for up to 48 days. E. coli O157-associated attaching-effacing (AE) lesions were detected in the caecum and rectum of one six-week-old lamb, one day after inoculation. This is the first recorded observation of AE lesions in orally inoculated weaned sheep. Also, mean faecal excretion scores of NCTC12900 and an isogenic intimin (eae)-deficient mutant were determined from twenty-four six-week-old orally inoculated sheep. The eae mutant was cleared within 20 days and had lower mean excretion scores at all time points after day one post inoculation compared with the parental strain that was still being excreted at 48 days. Tissues were collected post mortem from animals selected at random from the study groups over the time course of the experiment. The eae mutant was detected in only 1/43 samples but the parental strain was recovered from 64/140 samples primarily from the large bowel although rumen, duodenum, jejunum, and ileum were culture positive especially from animals that were still excreting at and beyond 27 days after inoculation.
Resumo:
1. Nutrient concentrations (particularly N and P) determine the extent to which water bodies are or may become eutrophic. Direct determination of nutrient content on a wide scale is labour intensive but the main sources of N and P are well known. This paper describes and tests an export coefficient model for prediction of total N and total P from: (i) land use, stock headage and human population; (ii) the export rates of N and P from these sources; and (iii) the river discharge. Such a model might be used to forecast the effects of changes in land use in the future and to hindcast past water quality to establish comparative or baseline states for the monitoring of change. 2. The model has been calibrated against observed data for 1988 and validated against sets of observed data for a sequence of earlier years in ten British catchments varying from uplands through rolling, fertile lowlands to the flat topography of East Anglia. 3. The model predicted total N and total P concentrations with high precision (95% of the variance in observed data explained). It has been used in two forms: the first on a specific catchment basis; the second for a larger natural region which contains the catchment with the assumption that all catchments within that region will be similar. Both models gave similar results with little loss of precision in the latter case. This implies that it will be possible to describe the overall pattern of nutrient export in the UK with only a fraction of the effort needed to carry out the calculations for each individual water body. 4. Comparison between land use, stock headage, population numbers and nutrient export for the ten catchments in the pre-war year of 1931, and for 1970 and 1988 show that there has been a substantial loss of rough grazing to fertilized temporary and permanent grasslands, an increase in the hectarage devoted to arable, consistent increases in the stocking of cattle and sheep and a marked movement of humans to these rural catchments. 5. All of these trends have increased the flows of nutrients with more than a doubling of both total N and total P loads during the period. On average in these rural catchments, stock wastes have been the greatest contributors to both N and P exports, with cultivation the next most important source of N and people of P. Ratios of N to P were high in 1931 and remain little changed so that, in these catchments, phosphorus continues to be the nutrient most likely to control algal crops in standing waters supplied by the rivers studied.
Resumo:
Shiga-toxigenic Escherichia coli O157:H7 (STEC O157:H7) is associated with potentially fatal human disease, and a persistent reservoir of the organism is present in some farm animal species, especially cattle and sheep. The mechanisms of persistent colonisation of the ruminant intestine by STEC O157:H7 are poorly understood but may be associated with intimate adherence to eukaryotic cells. Intimate adherence, as evidenced by induction of attaching-effacing (AE) lesions by STEC O157, has been observed in 6-day-old conventional lambs after deliberate oral infection but not in older animals. Thus, the present study used a ligated intestinal loop technique to investigate whether STEC O157:H7 and other attaching-effacing E. coli may adhere intimately to the sheep large intestinal mucosa. To do this, four STEC O157:H7 strains, one STEC 026:K60:H11 and one Shiga toxin-negative E. coli O157:H7 strain, suspended in either phosphate-buffered saline or Dulbecco's modified Eagle's medium, were inoculated into ligated spiral colon loops of each of two lambs. The loops were removed 6 h after inoculation, fixed and examined by light and electron microscopy. AE lesions on the intestinal mucosa were produced by all the inoculated strains. However, the lesions were sparse and small, typically comprising bacterial cells intimately adhered to a single enterocyte, or a few adjacent enterocytes. There was little correlation between the extent of intimate adherence in this model and the bacterial cell density, pre-inoculation growth conditions of the bacteria or the strain tested.
Resumo:
The paper analyses the impact of a priori determinants of biosecurity behaviour of farmers in Great Britain. We use a dataset collected through a stratified telephone survey of 900 cattle and sheep farmers in Great Britain (400 in England and a further 250 in Wales and Scotland respectively) which took place between 25 March 2010 and 18 June 2010. The survey was stratified by farm type, farm size and region. To test the influence of a priori determinants on biosecurity behaviour we used a behavioural economics method, structural equation modelling (SEM) with observed and latent variables. SEM is a statistical technique for testing and estimating causal relationships amongst variables, some of which may be latent using a combination of statistical data and qualitative causal assumptions. Thirteen latent variables were identified and extracted, expressing the behaviour and the underlying determining factors. The variables were: experience, economic factors, organic certification of farm, membership in a cattle/sheep health scheme, perceived usefulness of biosecurity information sources, knowledge about biosecurity measures, perceived importance of specific biosecurity strategies, perceived effect (on farm business in the past five years) of welfare/health regulation, perceived effect of severe outbreaks of animal diseases, attitudes towards livestock biosecurity, attitudes towards animal welfare, influence on decision to apply biosecurity measures and biosecurity behaviour. The SEM model applied on the Great Britain sample has an adequate fit according to the measures of absolute, incremental and parsimonious fit. The results suggest that farmers’ perceived importance of specific biosecurity strategies, organic certification of farm, knowledge about biosecurity measures, attitudes towards animal welfare, perceived usefulness of biosecurity information sources, perceived effect on business during the past five years of severe outbreaks of animal diseases, membership in a cattle/sheep health scheme, attitudes towards livestock biosecurity, influence on decision to apply biosecurity measures, experience and economic factors are significantly influencing behaviour (overall explaining 64% of the variance in behaviour).
Resumo:
Current feed evaluation systems for ruminants are too imprecise to describe diets in terms of their acidosis risk. The dynamic mechanistic model described herein arises from the integration of a lactic acid (La) metabolism module into an extant model of whole-rumen function. The model was evaluated using published data from cows and sheep fed a range of diets or infused with various doses of La. The model performed well in simulating peak rumen La concentrations (coefficient of determination = 0.96; root mean square prediction error = 16.96% of observed mean), although frequency of sampling for the published data prevented a comprehensive comparison of prediction of time to peak La accumulation. The model showed a tendency for increased La accumulation following feeding of diets rich in nonstructural carbohydrates, although less-soluble starch sources such as corn tended to limit rumen La concentration. Simulated La absorption from the rumen remained low throughout the feeding cycle. The competition between bacteria and protozoa for rumen La suggests a variable contribution of protozoa to total La utilization. However, the model was unable to simulate the effects of defaunation on rumen La metabolism, indicating a need for a more detailed description of protozoal metabolism. The model could form the basis of a feed evaluation system with regard to rumen La metabolism.