3 resultados para Sharpey fibers
em CentAUR: Central Archive University of Reading - UK
Resumo:
We describe the capillary flow behavior of gels of beta-lactoglobulin (beta-lg) containing droplets of fibrils and the shear flow alignment of beta-lg fibers in dilute aqueous solutions. Polarized optical microscopy and laser scanning confocal microscopy are used to show that capillary shear flow does not affect the fibril droplet sizes in the beta-lg gels, the system behaving in this respect as a solution of compact colloidal particles under shear flow. Small-angle X-ray scattering (SAXS) on dilute aqueous solutions indicates that the fibers can be initially aligned under capillary shear, but this alignment is lost after 18 min of shear. Transmission electron microscopy experiments on the samples studied by SAXS suggest that the loss of orientation is due to a shear-induced breakup of the swollen fibril network. Dynamic and static light scattering on dilute beta-lg fibril aqueous solutions are used to show that before shear beta-lg fibrils behave as strongly interacting semiflexible polymers, while they behave as weakly interacting rods after 18 min of capillary shear.
Resumo:
We have succeeded in the preparation of electrospun fibers of polystyrene incorporating a metallo-organic polymer of [Fe (II) (4-octadecyl-1,2,4-triazole)3(ClO4)2]n. The obtained fibers have diameters in the range 2–4 µm and show the characteristic spin-crossover transition associated with the metallo-organic polymer. The structure of both, polystyrene and the metallo-organic polymer, in the fibers was also studied.