3 resultados para Shape-memory Alloys
em CentAUR: Central Archive University of Reading - UK
Resumo:
Supramolecular polyurethanes (SPUs) possess thermoresponsive and thermoreversible properties, and those characteristics are highly desirable in both bulk commodity and value-added applications such as adhesives, shape-memory materials, healable coatings and lightweight, impact-resistant structures (e.g. protection for mobile electronics). A better understanding of the mechanical properties, especially the rate and temperature sensitivity, of these materials are required to assess their suitability for different applications. In this paper, a newly developed SPU with tuneable thermal properties was studied, and the response of this SPU to compressive loading over strain rates from 10−3 to 104 s−1 was presented. Furthermore, the effect of temperature on the mechanical response was also demonstrated. The sample was tested using an Instron mechanical testing machine for quasi-static loading, a home-made hydraulic system for moderate rates and a traditional split Hopkinson pressure bars (SHPBs) for high strain rates. Results showed that the compression stress-strain behaviour was affected significantly by the thermoresponsive nature of SPU, but that, as expected for polymeric materials, the general trends of the temperature and the rate dependence mirror each other. However, this behaviour is more complicated than observed for many other polymeric materials, as a result of the richer range of transitions that influence the behaviour over the range of temperatures and strain rates tested.
Resumo:
The polymer backbone of a side-chain liquid crystal polymer exhibits an anisotropic shape due to the coupling of the liquid crystal orientational order of the mesogenic side-chains to the backbone. The magnitude and sign of this coupling may be controlled by chemical design. The introduction of chemical cross-links in to such a system provides both a memory of the anisotropic organisation and a mechanism by which the microscopic anisotropy can be realised at a macroscopic level. We show how this anisotropic network structure yields new phenomena when electric or mechanical fields are applied.
Resumo:
Recalling information involves the process of discriminating between relevant and irrelevant information stored in memory. Not infrequently, the relevant information needs to be selected from amongst a series of related possibilities. This is likely to be particularly problematic when the irrelevant possibilities are not only temporally or contextually appropriate but also overlap semantically with the target or targets. Here, we investigate the extent to which purely perceptual features which discriminate between irrelevant and target material can be used to overcome the negative impact of contextual and semantic relatedness. Adopting a distraction paradigm, it is demonstrated that when distracters are interleaved with targets presented either visually (Experiment 1) or auditorily (Experiment 2), a within-modality semantic distraction effect occurs; semantically-related distracters impact upon recall more than unrelated distracters. In the semantically-related condition, the number of intrusions in recall is reduced whilst the number of correctly recalled targets is simultaneously increased by the presence of perceptual cues to relevance (color features in Experiment 1 or speaker’s gender in Experiment 2). However, as demonstrated in Experiment 3, even presenting semantically-related distracters in a language and a sensory modality (spoken Welsh) distinct from that of the targets (visual English) is insufficient to eliminate false recalls completely, or to restore correct recall to levels seen with unrelated distracters . Together, the study shows how semantic and non-semantic discriminability shape patterns of both erroneous and correct recall.