15 resultados para Serum-Free
em CentAUR: Central Archive University of Reading - UK
Resumo:
The development of versatile bioactive surfaces able to emulate in vivo conditions is of enormous importance to the future of cell and tissue therapy. Tuning cell behaviour on two-dimensional surfaces so that the cells perform as if they were in a natural three-dimensional tissue represents a significant challenge, but one that must be met if the early promise of cell and tissue therapy is to be fully realised. Due to the inherent complexities involved in the manufacture of biomimetic three-dimensional substrates, the scaling up of engineered tissue-based therapies may be simpler if based upon proven two-dimensional culture systems. In this work, we developed new coating materials composed of the self-assembling peptide amphiphiles (PAs) C16G3RGD (RGD) and C16G3RGDS (RGDS) shown to control cell adhesion and tissue architecture while avoiding the use of serum. When mixed with the C16ETTES diluent PA at 13 : 87 (mol mol-1) ratio at 1.25 times 10-3 M, the bioactive {PAs} were shown to support optimal adhesion, maximal proliferation, and prolonged viability of human corneal stromal fibroblasts ({hCSFs)}, while improving the cell phenotype. These {PAs} also provided stable adhesive coatings on highly-hydrophobic surfaces composed of striated polytetrafluoroethylene ({PTFE)}, significantly enhancing proliferation of aligned cells and increasing the complexity of the produced tissue. The thickness and structure of this highly-organised tissue were similar to those observed in vivo, comprising aligned newly-deposited extracellular matrix. As such, the developed coatings can constitute a versatile biomaterial for applications in cell biology, tissue engineering, and regenerative medicine requiring serum-free conditions.
Resumo:
Purpose: Retinoic acid (RA) is a metabolite of vitamin A that plays a fundamental role in the development and function of the human eye. The purpose of this study was to investigate the effects of RA on the phenotype of corneal stromal keratocytes maintained in vitro for extended periods under serum-free conditions. Methods: Keratocytes isolated from human corneas were cultured up to 21 days in serum-free media supplemented with RA or DMSO vehicle. The effects of RA and of its removal after treatment on cell proliferation and morphology were evaluated. In addition, the expression of keratocyte markers was quantified at the transcriptional and protein levels by quantitative PCR and immunoblotting or ELISA, respectively. Furthermore, the effects of RA on keratocyte migration were tested using scratch assays. Results: Keratocytes cultured with RA up to 10×10-6 M showed enhanced proliferation and stratification, and reduced mobility. RA also promoted the expression of keratocyte-characteristic proteoglycans such as keratocan, lumican, and decorin, and increased the amounts of collagen type-I in culture while significantly reducing the expression of matrix metalloproteases 1, 3, and 9. RA effects were reversible, and cell phenotype reverted to that of control after removal of RA from media. Conclusions: RA was shown to control the phenotype of human corneal keratocytes cultured in vitro by regulating cell behaviour and extracellular matrix composition. These findings contribute to our understanding of corneal stromal biology in health and disease, and may prove useful in optimizing keratocyte cultures for applications in tissue engineering, cell biology, and medicine.
Resumo:
Due to their broad differentiation potential and their persistence into adulthood, human neural crest-derived stem cells (NCSCs) harbour great potential for autologous cellular therapies, which include the treatment of neurodegenerative diseases and replacement of complex tissues containing various cell types, as in the case of musculoskeletal injuries. The use of serum-free approaches often results in insufficient proliferation of stem cells and foetal calf serum implicates the use of xenogenic medium components. Thus, there is much need for alternative cultivation strategies. In this study we describe for the first time a novel, human blood plasma based semi-solid medium for cultivation of human NCSCs. We cultivated human neural crest-derived inferior turbinate stem cells (ITSCs) within a blood plasma matrix, where they revealed higher proliferation rates compared to a standard serum-free approach. Three-dimensionality of the matrix was investigated using helium ion microscopy. ITSCs grew within the matrix as revealed by laser scanning microscopy. Genetic stability and maintenance of stemness characteristics were assured in 3D cultivated ITSCs, as demonstrated by unchanged expression profile and the capability for self-renewal. ITSCs pre-cultivated in the 3D matrix differentiated efficiently into ectodermal and mesodermal cell types, particularly including osteogenic cell types. Furthermore, ITSCs cultivated as described here could be easily infected with lentiviruses directly in substrate for potential tracing or gene therapeutic approaches. Taken together, the use of human blood plasma as an additive for a completely defined medium points towards a personalisable and autologous cultivation of human neural crest-derived stem cells under clinical grade conditions.
Resumo:
The objective was to investigate the potential role of the oocyte in modulating proliferation and basal, FSH-induced and insulin-like growth factor (IGF)-induced secretion of inhibin A (inh A), activin A (act A), follistatin (FS), estradiol (E-2), and progesterone (P-4) by mural bovine granulosa cells. Cells from 4- to 6-mm follicles were cultured in serum-free medium containing insulin and androstenedione, and the effects of ovine FSH and IGF analogue (LR3-IGF-1) were tested alone and in the presence of denuded bovine oocytes (2, 8, or 20 per well). Medium was changed every 48 h, cultures were terminated after 144 h, and viable cell number was determined. Results are based on combined data from four independent cultures and are presented for the last time period only when responses were maximal. Both FSH and IGF increased (P < 0.001) secretion of inh A, act A, FS, E-2, and P-4 and raised cell number. In the absence of FSH or IGF, coculture with oocytes had no effect on any of the measured hormones, although cell number was increased up to 1.8-fold (P < 0.0001). Addition of oocytes to FSH-stimulated cells dose-dependently suppressed (P < 0.0001) inh A (6-fold maximum suppression), act A (5.5-fold), FS (3.6-fold), E-2 (4.6-fold), and P-4 (2.4-fold), with suppression increasing with FSH dose. Likewise, oocytes suppressed (P < 0.001) IGF-induced secretion of inh A, act A, FS, and E-2 (P < 0.05) but enhanced IGF-induced P-4 secretion (1.7-fold; P < 0.05). Given the similarity of these oocyte-mediated actions to those we observed previously following epidermal growth factor (EGF) treatment, we used immunocytochemistry to determine whether bovine oocytes express EGF or transforming growth factor (TGF) alpha. Intense staining with TGFalpha antibody (but not with EGF antibody) was detected in oocytes both before and after coculture. Experiments involving addition of TGFalpha to granulosa cells confirmed that the peptide mimicked the effects of oocytes on cell proliferation and on FSH- and IGF-induced hormone secretion. These experiments indicate that bovine oocytes secrete a factor(s) capable of modulating granulosa cell proliferation and responsiveness to FSH and IGF in terms of steroidogenesis and production of inhibin-related peptides, bovine oocytes express TGFalpha but not EGF, and TGFalpha is a prime candidate for mediating the actions of oocytes on bovine granulosa cells.
Resumo:
Background: Efficacy of endocrine therapy is compromised when human breast cancer cells circumvent imposed growth inhibition. The model of long-term oestrogen-deprived MCF-7 human breast cancer cells has suggested the mechanism results from hypersensitivity to low levels of residual oestrogen. Materials and methods: MCF-7 cells were maintained for up to 30 weeks in phenol-red-free medium and charcoal-stripped serum with 10-8 M 17-oestradiol and 10 g/ml insulin (stock 1), 10-8 M 17-oestradiol (stock 2), 10 g/ml insulin (stock 3) or no addition (stock 4). Results: Loss of growth response to oestrogen was observed only in stock 4 cells. Long-term maintenance with insulin in the absence of oestradiol (stock 3) resulted in raised oestrogen receptor alpha (ERlevels (measured by western immunoblotting) and development of hypersensitivity (assayed by oestrogen-responsive reporter gene induction and dose response to oestradiol for proliferation under serum-free conditions), but with no loss of growth response to oestrogen. Conclusion: Hypersensitivity can develop without any growth adaptation and therefore is not a prerequisite for loss of growth response in MCF-7 cells.
Resumo:
Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and β1 and interleukin 1β. Conclusions In vitro, the transcriptome of granulosa cells responded minimally to FSH compared with the response to TNFα. The response to TNFα indicated an active process akin to tissue remodelling as would occur upon atresia. Additionally there was reduction in endocrine function and induction of an inflammatory response to TNFα that displays features similar to immune cells.
Resumo:
Neural stem cells (NSCs) are potential sources for cell therapy of neurodegenerative diseases and for drug screening. Despite their potential benefits, ethical and practical considerations limit the application of NSCs derived from human embryonic stem cells (ES) or adult brain tissue. Thus, alternative sources are required to satisfy the criteria of ready accessibility, rapid expansion in chemically defined media and reliable induction to a neuronal fate. We isolated somatic stem cells from the human periodontium that were collected during minimally invasive periodontal access flap surgery as part of guided tissue regeneration therapy. These cells could be propagated as neurospheres in serum-free medium, which underscores their cranial neural crest cell origin. Culture in the presence of epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) under serum-free conditions resulted in large numbers of nestin-positive/Sox-2-positive NSCs. These periodontium-derived (pd) NSCs are highly proliferative and migrate in response to chemokines that have been described as inducing NSC migration. We used immunocytochemical techniques and RT-PCR analysis to assess neural differentiation after treatment of the expanded cells with a novel induction medium. Adherence to substrate, growth factor deprivation, and retinoic acid treatment led to the acquisition of neuronal morphology and stable expression of markers of neuronal differentiation by more than 90% of the cells. Thus, our novel method might provide nearly limitless numbers of neuronal precursors from a readily accessible autologous adult human source, which could be used as a platform for further experimental studies and has potential therapeutic implications.
Resumo:
Somatic neural and neural crest stem cells are promising sources for cellular therapy of several neurodegenerative diseases. However, because of practical considerations such as inadequate accessibility of the source material, the application of neural crest stem cells is strictly limited. The secondary palate is a highly regenerative and heavily innervated tissue, which develops embryonically under direct contribution of neural crest cells. Here, we describe for the first time the presence of nestin-positive neural crest-related stem cells within Meissner corpuscles and Merkel cell-neurite complexes located in the hard palate of adult Wistar rats. After isolation, palatal neural crest-related stem cells (pNC-SCs) were cultivated in the presence of epidermal growth factor and fibroblast growth factor under serum-free conditions, resulting in large amounts of neurospheres. We used immunocytochemical techniques and reverse transcriptase-polymerase chain reaction to assess the expression profile of pNC-SCs. In addition to the expression of neural crest stem cell markers such as Nestin, Sox2, and p75, we detected the expression of Klf4, Oct4, and c-Myc. pNC-SCs differentiated efficiently into neuronal and glial cells. Finally, we investigated the potential expression of stemness markers within the human palate. We identified expression of stem cell markers nestin and CD133 and the transcription factors needed for reprogramming of somatic cells into pluripotent cells: Sox2, Oct4, Klf4, and c-Myc. These data show that cells isolated from palatal rugae form neurospheres, are highly plastic, and express neural crest stem cell markers. In addition, pNC-SCs may have the ability to differentiate into functional neurons and glial cells, serving as a starting point for therapeutic studies.
Resumo:
The aim of this study has been to characterize adult human somatic periodontium-derived stem cells (PDSCS) isolated from human periodontium and to follow their differentiation after cell culture. PDSCS were isolated from human periodontal tissue and cultured as spheres in serum-free medium. After 10 days the primary spheres were dissociated and the secondary spheres sub-cultured for another 1-2 weeks. Cells from different time points were analyzed, and immunohistochemical and electron microscopic investigations carried out. Histological analysis showed differentiation of spheres deriving from the PDSCS with central production of extracellular matrix beginning 3 days after sub-culturing. Isolated PDSCS developed pseudopodia which contained actin. Tubulin was found in the central portion of the cells. Pseudopodia between different cells anastomosed, indicating intercellular transport. Immunostaining for osteopontin demonstrated a positive reaction in primary spheres and within extracellular matrix vesicles after sub-culturing. In cell culture under serum-free conditions human PDSCS form spheres which are capable of producing extracellular matrix. Further investigations have do be carried out to investigate the capability of these cells to differentiate into osteogenic progenitor cells.
Resumo:
Adult neural crest related-stem cells persist in adulthood, making them an ideal and easily accessible source of multipotent cells for potential clinical use. Recently, we reported the presence of neural crest-related stem cells within adult palatal ridges, thus raising the question of their localization in their endogenous niche. Using immunocytochemistry, reverse transcription-polymerase chain reaction, and correlative fluorescence and transmission electron microscopy, we identified myelinating Schwann cells within palatal ridges as a putative neural crest stem cell source. Palatal Schwann cells expressed nestin, p75(NTR), and S100. Correlative fluorescence and transmission electron microscopy revealed the exclusive nestin expression within myelinating Schwann cells. Palatal neural crest stem cells and nestin-positive Schwann cells isolated from adult sciatic nerves were able to grow under serum-free conditions as neurospheres in presence of FGF-2 and EGF. Spheres of palatal and sciatic origin showed overlapping expression pattern of neural crest stem cell and Schwann cell markers. Expression of the pluripotency factors Sox2, Klf4, c-Myc, Oct4, the NF-κB subunits p65, p50, and the NF-κB-inhibitor IκB-β were up-regulated in conventionally cultivated sciatic nerve Schwann cells and in neurosphere cultures. Finally, neurospheres of palatal and sciatic origin were able to differentiate into ectodermal, mesodermal, and endodermal cell types emphasizing their multipotency. Taken together, we show that nestin-positive myelinating Schwann cells can be reprogrammed into multipotent adult neural crest stem cells under appropriate culture conditions.
Resumo:
Schwann cells (SCs) are the supporting cells of the peripheral nervous system and originate from the neural crest. They play a unique role in the regeneration of injured peripheral nerves and have themselves a highly unstable phenotype as demonstrated by their unexpectedly broad differentiation potential. Thus, SCs can be considered as dormant, multipotent neural crest-derived progenitors or stem cells. Upon injury they de-differentiate via cellular reprogramming, re-enter the cell cycle and participate in the regeneration of the nerve. Here we describe a protocol for efficient generation of neurospheres from intact adult rat and murine sciatic nerve without the need of experimental in vivo pre-degeneration of the nerve prior to Schwann cell isolation. After isolation and removal of the connective tissue, the nerves are initially plated on poly-D-lysine coated cell culture plates followed by migration of the cells up to 80% confluence and a subsequent switch to serum-free medium leading to formation of multipotent neurospheres. In this context, migration of SCs from the isolated nerve, followed by serum-free cultivation of isolated SCs as neurospheres mimics the injury and reprograms fully differentiated SCs into a multipotent, neural crest-derived stem cell phenotype. This protocol allows reproducible generation of multipotent Schwann cell-derived neurospheres from sciatic nerve through cellular reprogramming by culture, potentially marking a starting point for future detailed investigations of the de-differentiation process.
Resumo:
Six nutrient formulations were studied for their efficacy in inducing mitosis in white lupin seedling cotyledon protoplasts of which the formulations of Schafer-Menuhr & Sturmer (AS) and Kao (K8p) were found to be superior over the other four when supplemented with 6-benzylaminopurine and alpha-naphthaleneacetic acid (alpha-NAA). An unltrafiltration treatment of K8p increased mitotic frequency by 130% when compared with the untreated control. Medium enrichment with 0.2% bovine serum albumin (BSA) brought about a dramatic 1341% rise in protoplast division in comparison with BSA-free medium but only when the enrichment was carried out in Kao and Michayluk (KM8p) background containing 2, 4-dichlorophenoxyacetic acid, alpha-NAA and zeatin. A higher number of protocolonies (each proliferating from single protoplast following multiple divisions) were seen in 0.4% BSA. With this breakthrough in white lupin protoplast research, it is now possible to reproducibly obtain protocolonies that was hitherto not possible.
Resumo:
The interaction of epicatechin with bovine serum albumin (BSA) was studied by isothermal titration calorimetry. The binding constant (K) and associated thermodynamic binding parameters (n, Delta H) were determined for the interaction at three solution concentrations of BSA using a binding model assuming independent binding sites. These data show weak non-covalent binding of epicatechin to BSA. The interaction energetics varied with BSA concentration in the calorimeter cell, suggesting that the binding of epicatechin induced BSA aggregation. The free energy (Delta G) remained constant within a range of 2 kJ mol(-1) and negative entropy was observed, indicating an enthalpy driven exothermic interaction. It is concluded that the non-covalent epicatechin-BSA complex is formed by hydrogen bonding. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The hemagglutinins (HAs) of human H1 and H3 influenza viruses and avian H5 influenza virus were produced as recombinant fusion proteins with the human immunoglobulin Fc domain. Recombinant HA-human immunoglobulin Fc domain (HA-HuFc) proteins were secreted from baculovirus-infected insect cells as glycosylated oligomer HAs of the anticipated molecular mass, agglutinated red blood cells, were purified on protein A, and were used to immunize mice in the absence of adjuvant. Immunogenicity was demonstrated for all subtypes, with the serum samples demonstrating subtype-specific hemagglutination inhibition, epitope specificity similar to that seen with virus infection, and neutralization. HuFc-tagged HAs are potential candidates for gene-to-vaccine approaches to influenza vaccination.
Resumo:
Binding to bovine serum albumin of monomeric (vescalagin and pedunculagin) and dimeric ellagitannins (roburin A, oenothein B, and gemin A) was investigated by isothermal titration calorimetry and fluorescence spectroscopy, which indicated two types of binding sites. Stronger and more specific sites exhibited affinity constants, K1, of 104–106 M–1 and stoichiometries, n1, of 2–13 and dominated at low tannin concentrations. Weaker and less-specific binding sites had K2 constants of 103–105 M–1 and stoichiometries, n2, of 16–30 and dominated at higher tannin concentrations. Binding to stronger sites appeared to be dependent on tannin flexibility and the presence of free galloyl groups. Positive entropies for all but gemin A indicated that hydrophobic interactions dominated during complexation. This was supported by an exponential relationship between the affinity, K1, and the modeled hydrophobic accessible surface area and by a linear relationship between K1 and the Stern–Volmer quenching constant, KSV.