44 resultados para Serine Protease

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To further elucidate the role of proteases capable of cleaving N-terminal proopiomelanocortin (N-POMC)-derived peptides, we have cloned two cDNAs encoding isoforms of the airway trypsin-like protease (AT) from mouse (MAT) and rat ( RAT), respectively. The open reading frames comprise 417 amino acids (aa) and 279 aa. The mouse AT gene was located at chromosome 5E1 and contains 10 exons. The longer isoform, which we designated MAT1 and RAT1, has a simple type II transmembrane protein structure, consisting of a short cytoplasmic domain, a transmembrane domain, a SEA (63-kDa sea urchin sperm protein, enteropeptidase, agrin) module, and a serine protease domain. The human homolog of MAT1 and RAT1 is the human AT ( HAT). The shorter isoform, designated MAT2 and RAT2, which contains an alternative N terminus, was formerly described in the rat as adrenal secretory serine protease (AsP) and has been shown to be involved in the processing of N-POMC-derived peptides. In contrast to the long isoform, neither MAT2 and RAT2 ( AsP) contain a transmembrane domain nor a SEA domain but an N-terminal signal peptide to direct the enzyme to the secretory pathway. The C terminus, covering the catalytic triad, is identical in both isoforms. Immunohistochemically, MAT/RAT was predominantly expressed in tissues of the upper gastrointestinal and the respiratory tract - but also in the adrenal gland. Moreover, isoform-specific RT-PCR and quantitative PCR analysis revealed a complex expression pattern of the two isoforms with differences between mice and rats. These findings indicate a multifunctional role of these proteases beyond adrenal proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adrenal cortex is a dynamic organ in which the cells of the outer cortex continually divide. It is well known that this cellular proliferation is dependent on constant stimulation from peptides derived from the ACTH precursor pro-opiomelanocortin (POMC) because disruption of pituitary corticotroph function results in rapid atrophy of the gland. Previous results from our laboratory have suggested that the adrenal mitogen is a fragment derived from the N-terminal of POMC not containing the gamma-MSH sequence. Because such a peptide is not generated during processing of POMC in the pituitary, we proposed that the mitogen is generated from circulating pro-gamma-MSH by an adrenal protease. Using degenerate oligonucleotides, we identified a secreted serine protease expressed by the adrenal gland that we named adrenal secretory protease (ASP). In the adrenal cortex, expression of ASP is limited to the outer zona glomerulosa/fasciculata, the region where cortical cells are believed to be derived, and is significantly up-regulated during compensatory growth. Y1 adrenocortical cells transfected with a vector expressing an antisense RNA (and thus having reduced levels of endogenous ASP) were found to grow slower than sense controls while also losing their ability to utilize exogenous pro-gamma-MSH in the media supporting a role for ASP in adrenal growth. Digestion of an N-POMC peptide substrate encompassing the residues around the dibasic cleavage site at positions 49/50 with affinity-purified ASP showed cleavage not to occur at the dibasic site but two residues downstream leading us to propose the identity of the adrenal mitogen to be N-POMC (1-52).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Serine proteases are a major component of viper venoms and are thought to disrupt several distinct elements of the blood coagulation system of envenomed victims. A detailed understanding of the functions of these enzymes is important both for acquiring a fuller understanding of the pathology of envenoming and because these venom proteins have shown potential in treating blood coagulation disorders. Methodology/Principal Findings: In this study a novel, highly abundant serine protease, which we have named rhinocerase, has been isolated and characterised from the venom of Bitis gabonica rhinoceros using liquid phase isoelectric focusing and gel filtration. Like many viper venom serine proteases, this enzyme is glycosylated; the estimated molecular mass of the native enzyme is approximately 36kDa, which reduces to 31kDa after deglycosylation. The partial amino acid sequence shows similarity to other viper venom serine proteases, but is clearly distinct from the sequence of the only other sequenced serine protease from Bitis gabonica. Other viper venom serine proteases have been shown to exert distinct biological effects, and our preliminary functional characterization of rhinocerase suggest it to be multifunctional. It is capable of degrading α and β chains of fibrinogen, dissolving plasma clots and of hydrolysing a kallikrein substrate. Conclusions/Significance: A novel multifunctional viper venom serine protease has been isolated and characterised. The activities of the enzyme are consistent with the known in vivo effects of Bitis gabonica envenoming, including bleeding disorders, clotting disorders and hypotension. This study will form the basis for future research to understand the mechanisms of serine protease action, and examine the potential for rhinocerase to be used clinically to reduce the risk of human haemostatic disorders such as heart attacks and strokes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An important facet of the Staphylococcus aureus host-pathogen interaction is the ability of the invading bacterium to evade host innate defenses, particularly the cocktail of host antimicrobial peptides. In this work, we showed that IsdA, a surface protein of S. aureus which is required for nasal colonization, binds to lactoferrin, the most abundant antistaphylococcal polypeptide in human nasal secretions. The presence of IsdA on the surface of S. aureus confers resistance to killing by lactoferrin. In addition, the bactericidal activity of lactoferrin was inhibited by addition of phenylmethylsulfonyl fluoride, implicating the serine protease activity of lactoferrin in the killing of S. aureus. Recombinant IsdA was a competitive inhibitor of lactoferrin protease activity. Reciprocally, antibody reactive to IsdA enhanced killing of S. aureus. Thus, IsdA can protect S. aureus against lactoferrin and acts as a protease inhibitor.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Serine proteases are major components of viper venom and target various stages of the blood coagulation system in victims and prey. A better understanding of the diversity of serine proteases and other enzymes present in snake venom will help to understand how the complexity of snake venom has evolved and will aid the development of novel therapeutics for treating snake bites. Methodology and Principal Findings: Four serine protease-encoding genes from the venom gland transcriptome of Bitis gabonica rhinoceros were amplified and sequenced. Mass spectrometry suggests the four enzymes corresponding to these genes are present in the venom of B. g. rhinoceros. Two of the enzymes, rhinocerases 2 and 3 have substitutions to two of the serine protease catalytic triad residues and are thus unlikely to be catalytically active, though they may have evolved other toxic functions. The other two enzymes, rhinocerases 4 and 5, have classical serine protease catalytic triad residues and thus are likely to be catalytically active, however they have glycine rather than the more typical aspartic acid at the base of the primary specificity pocket (position 189). Based on a detailed analysis of these sequences we suggest that alternative splicing together with individual amino acid mutations may have been involved in their evolution. Changes within amino acid segments which were previously proposed to undergo accelerated change in venom serine proteases have also been observed. Conclusions and Significance: Our study provides further insight into the diversity of serine protease isoforms present within snake venom and discusses their possible functions and how they may have evolved. These multiple serine protease isoforms with different substrate specificities may enhance the envenomation effects and help the snake to adapt to new habitats and diets. Our findings have potential for helping the future development of improved therapeutics for snake bites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Snakebites are a major neglected tropical disease responsible for as many as 95000 deaths every year worldwide. Viper venom serine proteases disrupt haemostasis of prey and victims by affecting various stages of the blood coagulation system. A better understanding of their sequence, structure, function and phylogenetic relationships will improve the knowledge on the pathological conditions and aid in the development of novel therapeutics for treating snakebites. A large dataset for all available viper venom serine proteases was developed and analysed to study various features of these enzymes. Despite the large number of venom serine protease sequences available, only a small proportion of these have been functionally characterised. Although, they share some of the common features such as a C-terminal extension, GWG motif and disulphide linkages, they vary widely between each other in features such as isoelectric points, potential N-glycosylation sites and functional characteristics. Some of the serine proteases contain substitutions for one or more of the critical residues in catalytic triad or primary specificity pockets. Phylogenetic analysis clustered all the sequences in three major groups. The sequences with substitutions in catalytic triad or specificity pocket clustered together in separate groups. Our study provides the most complete information on viper venom serine proteases to date and improves the current knowledge on the sequence, structure, function and phylogenetic relationships of these enzymes. This collective analysis of venom serine proteases will help in understanding the complexity of envenomation and potential therapeutic avenues.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mediators involved in the generation of symptoms in patients with irritable bowel syndrome (IBS) are poorly understood. Here we show that colonic biopsy samples from IBS patients release increased levels of proteolytic activity (arginine cleavage) compared to asymptomatic controls. This was dependent on the activation of NF-kappaB. In addition, increased proteolytic activity was measured in vivo, in colonic washes from IBS compared with control patients. Trypsin and tryptase expression and release were increased in colonic biopsies from IBS patients compared with control subjects. Biopsies from IBS patients (but not controls) released mediators that sensitized murine sensory neurons in culture. Sensitization was prevented by a serine protease inhibitor and was absent in neurons lacking functional protease-activated receptor-2 (PAR2). Supernatants from colonic biopsies of IBS patients, but not controls, also caused somatic and visceral hyperalgesia and allodynia in mice, when administered into the colon. These pronociceptive effects were inhibited by serine protease inhibitors and a PAR2 antagonist and were absent in PAR2-deficient mice. Our study establishes that proteases are released in IBS and that they can directly stimulate sensory neurons and generate hypersensitivity symptoms through the activation of PAR2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serine proteases generated during injury and inflammation cleave protease-activated receptor 2 (PAR(2)) on primary sensory neurons to induce neurogenic inflammation and hyperalgesia. Hyperalgesia requires sensitization of transient receptor potential vanilloid (TRPV) ion channels by mechanisms involving phospholipase C and protein kinase C (PKC). The protein kinase D (PKD) serine/threonine kinases are activated by diacylglycerol and PKCs and can phosphorylate TRPV1. Thus, PKDs may participate in novel signal transduction pathways triggered by serine proteases during inflammation and pain. However, it is not known whether PAR(2) activates PKD, and the expression of PKD isoforms by nociceptive neurons is poorly characterized. By using HEK293 cells transfected with PKDs, we found that PAR(2) stimulation promoted plasma membrane translocation and phosphorylation of PKD1, PKD2, and PKD3, indicating activation. This effect was partially dependent on PKCepsilon. By immunofluorescence and confocal microscopy, with antibodies against PKD1/PKD2 and PKD3 and neuronal markers, we found that PKDs were expressed in rat and mouse dorsal root ganglia (DRG) neurons, including nociceptive neurons that expressed TRPV1, PAR(2), and neuropeptides. PAR(2) agonist induced phosphorylation of PKD in cultured DRG neurons, indicating PKD activation. Intraplantar injection of PAR(2) agonist also caused phosphorylation of PKD in neurons of lumbar DRG, confirming activation in vivo. Thus, PKD1, PKD2, and PKD3 are expressed in primary sensory neurons that mediate neurogenic inflammation and pain transmission, and PAR(2) agonists activate PKDs in HEK293 cells and DRG neurons in culture and in intact animals. PKD may be a novel component of a signal transduction pathway for protease-induced activation of nociceptive neurons and an important new target for antiinflammatory and analgesic therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain serine proteases signal to cells by cleaving protease-activated receptors (PARs) and thereby regulate hemostasis, inflammation, pain and healing. However, in many tissues the proteases that activate PARs are unknown. Although pancreatic trypsin may be a physiological agonist of PAR(2) and PAR(4) in the small intestine and pancreas, these receptors are expressed by cells not normally exposed pancreatic trypsin. We investigated whether extrapancreatic forms of trypsin are PAR agonists. Epithelial cells lines from prostate, colon, and airway and human colonic mucosa expressed mRNA encoding PAR(2), trypsinogen IV, and enteropeptidase, which activates the zymogen. Immunoreactive trypsinogen IV was detected in vesicles in these cells. Trypsinogen IV was cloned from PC-3 cells and expressed in CHO cells, where it was also localized to cytoplasmic vesicles. We expressed trypsinogen IV with an N-terminal Igkappa signal peptide to direct constitutive secretion and allow enzymatic characterization. Treatment of conditioned medium with enteropeptidase reduced the apparent molecular mass of trypsinogen IV from 36 to 30 kDa and generated enzymatic activity, consistent with formation of trypsin IV. In contrast to pancreatic trypsin, trypsin IV was completely resistant to inhibition by polypeptide inhibitors. Exposure of cell lines expressing PAR(2) and PAR(4) to trypsin IV increased [Ca(2+)](i) and strongly desensitized cells to PAR agonists, whereas there were no responses in cells lacking these receptors. Thus, trypsin IV is a potential agonist of PAR(2) and PAR(4) in epithelial tissues where its resistance to endogenous trypsin inhibitors may permit prolonged signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteolytic enzymes comprise approximately 2 percent of the human genome [1]. Given their abundance, it is not surprising that proteases have diverse biological functions, ranging from the degradation of proteins in lysosomes to the control of physiological processes such as the coagulation cascade. However, a subset of serine proteases (possessing serine residues within their catalytic sites), which may be soluble in the extracellular fluid or tethered to the plasma membrane, are signaling molecules that can specifically regulate cells by cleaving protease-activated receptors (PARs), a family of four G-protein-coupled receptors (GPCRs). These serine proteases include members of the coagulation cascade (e.g., thrombin, factor VIIa, and factor Xa), proteases from inflammatory cells (e.g., mast cell tryptase, neutrophil cathepsin G), and proteases from epithelial tissues and neurons (e.g., trypsins). They are often generated or released during injury and inflammation, and they cleave PARs on multiple cell types, including platelets, endothelial and epithelial cells, myocytes, fibroblasts, and cells of the nervous system. Activated PARs regulate many essential physiological processes, such as hemostasis, inflammation, pain, and healing. These proteases and their receptors have been implicated in human disease and are potentially important targets for therapy. Proteases and PARs participate in regulating most organ systems and are the subject of several comprehensive reviews [2, 3]. Within the central and peripheral nervous systems, proteases and PARs can control neuronal and astrocyte survival, proliferation and morphology, release of neurotransmitters, and the function and activity of ion channels, topics that have also been comprehensively reviewed [4, 5]. This chapter specifically concerns the ability of PARs to regulate TRPV channels of sensory neurons and thereby affect neurogenic inflammation and pain transmission [6, 7].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serine proteases from the circulation, inflammatory cells, digestive glands and microorganisms can signal to cells by cleaving protease-activated receptors (PARs), a family of four G-protein-coupled receptors. Proteases cleave PARs at specific sites to expose tethered ligand domains that bind to and activate the cleaved receptors. Despite this irreversible mechanism of activation, PAR signaling is tightly regulated to prevent the uncontrolled stimulation of cells. Although PARs are found in all organ systems, protease signaling is of particular interest in the gastrointestinal tract, where proteases regulate neurotransmission, secretion, motility, epithelial permeability and intestinal inflammation, and can thus contribute to disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SHP-1 is a Src homology 2 (SH2) domain-containing tyrosine phosphatase that plays an essential role in negative regulation of immune cell activity. We describe here a new model for regulation of SHP-1 involving phosphorylation of its C-terminal Ser(591) by associated protein kinase Calpha. In human platelets, SHP-1 was found to constitutively associate with its substrate Vav1 and, through its SH2 domains, with protein kinase Calpha. Upon activation of either PAR1 or PAR4 thrombin receptors, the association between the three proteins was retained, and Vav1 became phosphorylated on tyrosine and SHP-1 became phosphorylated on Ser(591). Phosphorylation of SHP-1 was mediated by protein kinase C and negatively regulated the activity of SHP-1 as demonstrated by a decrease in the in vitro ability of SHP-1 to dephosphorylate Vav1 on tyrosine. Protein kinase Calpha therefore critically and negatively regulates SHP-1 function, forming part of a mechanism to retain SHP-1 in a basal active state through interaction with its SH2 domains, and phosphorylating its C-terminal Ser(591) upon cellular activation leading to inhibition of SHP-1 activity and an increase in the tyrosine phosphorylation status of its substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serine acetyltransferase (SAT) catalyzes the first step of cysteine synthesis in microorganisms and higher plants. Here we present the 2.2 Angstrom crystal structure of SAT from Escherichia coli, which is a dimer of trimers, in complex with cysteine. The SAT monomer consists of an amino-terminal alpha-helical domain and a carboxyl- terminal left-handed beta-helix. We identify His(158) and Asp(143) as essential residues that form a catalytic triad with the substrate for acetyl transfer. This structure shows the mechanism by which cysteine inhibits SAT activity and thus controls its own synthesis. Cysteine is found to bind at the serine substrate site and not the acetyl-CoA site that had been reported previously. On the basis of the geometry around the cysteine binding site, we are able to suggest a mechanism for the O-acetylation of serine by SAT. We also compare the structure of SAT with other left-handed beta-helical structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in insect cells using baculovirus vectors leads to the abundant production of virus-like particles (VLPs) that represent the immature form of the virus. When Gag-Pol is included, however, VLP production is abolished, a result attributed to premature protease activation degrading the intracellular pool of Gag precursor before particle assembly can occur. As large-scale synthesis of mature noninfectious VLPs would be useful, we have sought to control HIV protease activity in insect cells to give a balance of Gag and Gag-Pol that is compatible with mature particle formation. We show here that intermediate levels of protease activity in insect cells can be attained through site-directed mutagenesis of the protease and through antiprotease drug treatment. However, despite Gag cleavage patterns that mimicked those seen in mammalian cells, VLP synthesis exhibited an essentially all-or-none response in which VLP synthesis occurred but was immature or failed completely. Our data are consistent with a requirement for specific cellular factors in addition to the correct ratio of Gag and Gag-Pol for assembly of mature retrovirus particles in heterologous cell types. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An acoustic wave sensor coated with an artificial biomimetic recognition element has been developed to selectively detect the amino acid L-serine. A highly specific non-covalently imprinted polymer was cast on one electrode of a quartz crystal microbalance (QCM) as a thin permeable film. Selective rebinding of the L-serine was observed as a frequency shift in the QCM with a detection limit of 2 ppb and for concentrations up to 0.4 ppm. The sensor binding is shown to be capable of discrimination between L- and D-stereoisomers of serine as a result of the enantioselectivity of the imprinted binding sites. (C) 2002 Elsevier Science B.V. All rights reserved.