93 resultados para Series.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Time scales of pedogenic calcrete development are quantified by subsampling carbonate from within a mature (stage V) pedogenic calcrete profile from southeast Spain and dating the material by U-series disequilibria. The location of the earliest and latest cements can be estimated by comparing previous studies of calcrete morphological development with micromorphological analysis of the study profile. Carbonate was sampled and dated from three locations within the profile: (1) below the lower surface of clasts within the hardpan (representing the earliest cement present-207 +/- 11 ka), (2) from the centre of cement filled pores within the hardpan (reflecting the final plugging of the calcrete hardpan-155 +/- 9 ka) and (3) from the laminar calcrete overlying the hardpan (representing the latest cement-112 +/- 15 ka). These results show that the hardpan took between 73 and 31 ka to form, whilst the mature stage V profile took between 121 and 69 ka to form. This is the first time that rates of mature calcrete development have been established by direct radiometric dating of the authigenic carbonate. The technique is appropriate for dating mature calcretes in dryland regions worldwide and offers the opportunity of increasing our understanding of the spatial and temporal variability in rates of pedogenic calcrete development. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Immature and mature calcretes from an alluvial terrace sequence in the Sorbas basin, southeast Spain, were dated by the U-series isochron technique. The immature horizons consistently produced statistically reliable ages of high precision. The mature horizons typically produced statistically unreliable ages but, because of linear trends in the dataset and low errors associated with each data point, it was still possible to place a best-fit isochron through the dataset to produce an age with low associated uncertainties. It is, however, only possible to prove that these statistically unreliable ages have geochronological significance if multiple isochron ages are produced for a single site, and if these multiple ages are stratigraphically consistent. The geochronological significance of such ages can be further proven if at least one of the multiple ages is statistically reliable. By using this technique to date calcretes that have formed during terrace aggradation and at the terrace surface after terrace abandonment it is possible not only to date the timing of terrace aggradation but also to constrain the age at which the river switched from aggradation to incision. This approach, therefore, constrains the timing of changes in fluvial processes more reliably than any currently used geochronological procedure and is appropriate for dating terrace sequences in dryland regions worldwide, wherever calcrete horizons are present. (c) 2005 University of Washington. All rights reserved.