73 resultados para Semisolid Structure Formation
em CentAUR: Central Archive University of Reading - UK
Resumo:
Biologically-inspired peptide sequences have been explored as auxiliaries to mediate self-assembly of synthetic macromolecules into hierarchically organized solution and solid state nanostructures. Peptide sequences inspired by the coiled coil motif and "switch" peptides, which can adopt both amphiphilic alpha-helical and beta-strand conformations, were conjugated to poly(ethylene glycol) (PEG). The solution and solid state self-assembly of these materials was investigated using a variety of spectroscopic, scattering and microscopic techniques. These experiments revealed that the folding and organization properties of the peptide sequences are retained upon conjugation of PEG and that they provide the driving force for the formation of the different nanoscale structures which were observed. The possibility of using defined peptide sequences to direct structure formation of synthetic polymers together with the potential of peptide sequences to induce a specific biological response offers interesting prospects for the development of novel self-assembled and biologically active materials.
Resumo:
Terminally protected acyclic tripeptides containing tyrosine residues at both termini self-assemble into nanotubes in crystals through various non-covalent interactions including intermolecular hydrogen bonds. The nanotube has an average internal diameter of 5 angstrom (0.5 nm) and the tubular ensemble is developed through the hydrogen-bonded phenolic-OH side chains of tyrosine (Tyr) residues [Org. Lett. 2004, 6, 4463]. We have synthesized and studied several tripeptides 3-6 to probe the role of tyrosine residues in nanotube structure formation. These peptides either have only one Tyr residue at N- or C-termini or they have one or two terminally located phenylalanine (Phe) residues. These tripeptides failed to form any kind of nanotubular structure in the solid state. Single crystal X-ray diffraction studies of these peptides 3-6 clearly demonstrate that substitution of any one of the terminal Tyr residues in the Boc-Tyr-X-Tyr-OMe (X=VaI or Ile) sequence disrupts the formation of the nanotubular structure indicating that the presence of two terminally located Tyr residues is vital for nanotube formation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The incorporation of caseins and whey proteins into acid gels produced from unheated and heat treated skimmed milk was studied by confocal scanning laser microscopy (CSLM) using fluorescent labelled proteins. Bovine casein micelles were labelled using Alexa Fluor 594, while whey proteins were labelled using Alexa Fluor 488. Samples of the labelled protein solutions were introduced into aliquots of pasteurised skim milk, and skim milk heated to 90 degrees C for 2 min and 95 degrees C for 8 min. The milk was acidified at 40 degrees C to a final pH of 4.4 using 20 g gluconodelta-lactone/l (GDL). The formation of gels was observed with CSLM at two wavelengths (488 nm and 594 nm), and also by visual and rheological methods. In the control milk, as pH decreased distinct casein aggregates appeared, and as further pH reduction occurred, the whey proteins could be seen to coat the casein aggregates. With the heated milks, the gel structure was formed of continuous strands consisting of both casein and whey protein. The formation of the gel network was correlated with an increase in the elastic modulus for all three treatments, in relation to the severity of heat treatment. This model system allows the separate observation of the caseins and whey proteins, and the study of the interactions between the two protein fractions during the formation of the acid gel structure, on a real-time basis. The system could therefore be a valuable tool in the study of structure formation in yoghurt and other dairy protein systems.
Resumo:
The magnetoviscous effect, change in viscosity with change in magnetic field strength, and the anisotropy of magnetoviscous effect, change in viscosity with orientation of magnetic field, have been a focus of interest since four decades. A satisfactory understanding of the microscopic origin of anisotropy of magnetoviscous effect in magnetic fluids is still a matter of debate and a field of intense research. Here, we present an extensive simulation study to understand the relation between the anisotropy of magnetoviscous effect and the underlying change in micro-structures of ferrofluids. Our results indicate that field-induced chain-like structures respond very differently depending on their orientation relative to the direction of an externally applied shear flow, which leads to a pronounced anisotropy of viscosity. In this work, we focus on three exemplary values of dipolar interaction strengths which correspond to weak, intermediate and strong interactions between dipolar colloidal particles. We compare our simulation results with an experimental study on cobalt-based ferrofluids as well as with an existing theoretical model called the chain model. A non-monotonic behaviour in the anisotropy of magnetoviscous effect is observed with increasing dipolar interaction strength and is explained in terms of micro-structure formation.
Resumo:
The effect of poly(ethylene glycol) PEG crystallization on P-sheet fibril formation is studied for a series of three peptide/PEG conjugates containing fragments modified from the amyloid P peptide, specifically KLVFF, FFKLVFF, and AAKLVFF. These are conjugated to PEG with M-n = 3300 g mol(-1). It is found, via small-angle X-ray scattering,X-ray diffraction, atomic force microscopy, and polarized optical microscopy, that PEG crystallinity in dried samples can disturb fibrillization, in particular cross-P amyloid structure formation, for the conjugate containing the weak fibrillizer KLVFF, whereas this is retained for the conjugates containing the stronger fibrillizers AAKLVFF and FFKLVFF. For these two samples, the alignment of peptide fibrils also drives the orientation of the attached PEG chains. Our results highlight the importance of the antagonistic effects of PEG crystallization and peptide fibril formation in PEG/peptide conjugates.
Resumo:
The crystallization kinetics of each constituent of poly(p-dioxanone)-b-poly(epsilon-caprolactone) diblock copolymers (PPDX-b-PCL) has been determined in a wide composition range by differential scanning calorimetry and compared to that of the equivalent homopolymers. Spherulitic growth rates were also measured by polarized optical microscopy while atomic force microscopy was employed to reveal the morphology of one selected diblock copolymer. It was found that crystallization drives structure formation and both components form lamellae within mixed spherulitic superstructures. The overall isothermal crystallization kinetics of the PPDX block at high temperatures, where the PCL is molten, was determined by accelerating the kinetics through a previous self-nucleation procedure. The application of the Lauritzen and Ho. man theory to overall growth rate data yielded successful results for PPDX and the diblock copolymers. The theory was applied to isothermal overall crystallization of previously self-nucleated PPDX ( where growth should be the dominant factor if self-nucleation was effective) and the energetic parameters obtained were perfectly matched with those obtained from spherulitic growth rate data of neat PPDX. A quantitative estimate of the increase in the energy barrier for crystallization of the PPDX block, caused by the covalently bonded molten PCL as compared to homo-PPDX, was thus determined. This energy increase can dramatically reduce the crystallization rate of the PPDX block as compared to homo-PPDX. In the case of the PCL block, both the crystallization kinetics and the self-nucleation results indicate that the PPDX is able to nucleate the PCL within the copolymers and heterogeneous nucleation is always present regardless of composition. Finally, preliminary results on hydrolytic degradation showed that the presence of relatively small amounts of PCL within PPDX-bPCL copolymers substantially retards hydrolytic degradation of the material in comparison to homo-PPDX. This increased resistance to hydrolysis is a complex function of composition and its knowledge may allow future prediction of the lifetime of the material for biomedical applications.
Resumo:
Gadget-2 is a massively parallel structure formation code for cosmological simulations. In this paper, we present a Java version of Gadget-2. We evaluated the performance of the Java version by running colliding galaxies simulation and found that it can achieve around 70% of C Gadget-2's performance.
Resumo:
Since its introduction in 1993, the Message Passing Interface (MPI) has become a de facto standard for writing High Performance Computing (HPC) applications on clusters and Massively Parallel Processors (MPPs). The recent emergence of multi-core processor systems presents a new challenge for established parallel programming paradigms, including those based on MPI. This paper presents a new Java messaging system called MPJ Express. Using this system, we exploit multiple levels of parallelism - messaging and threading - to improve application performance on multi-core processors. We refer to our approach as nested parallelism. This MPI-like Java library can support nested parallelism by using Java or Java OpenMP (JOMP) threads within an MPJ Express process. Practicality of this approach is assessed by porting to Java a massively parallel structure formation code from Cosmology called Gadget-2. We introduce nested parallelism in the Java version of the simulation code and report good speed-ups. To the best of our knowledge it is the first time this kind of hybrid parallelism is demonstrated in a high performance Java application. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In the 1990s the Message Passing Interface Forum defined MPI bindings for Fortran, C, and C++. With the success of MPI these relatively conservative languages have continued to dominate in the parallel computing community. There are compelling arguments in favour of more modern languages like Java. These include portability, better runtime error checking, modularity, and multi-threading. But these arguments have not converted many HPC programmers, perhaps due to the scarcity of full-scale scientific Java codes, and the lack of evidence for performance competitive with C or Fortran. This paper tries to redress this situation by porting two scientific applications to Java. Both of these applications are parallelized using our thread-safe Java messaging system—MPJ Express. The first application is the Gadget-2 code, which is a massively parallel structure formation code for cosmological simulations. The second application uses the finite-domain time-difference method for simulations in the area of computational electromagnetics. We evaluate and compare the performance of the Java and C versions of these two scientific applications, and demonstrate that the Java codes can achieve performance comparable with legacy applications written in conventional HPC languages. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
Noncovalent interactions play key roles in many natural processes leading to the self-assembly of molecules with the formation of supramolecular structures. One of the most important forces responsible for self-assembly is hydrogen bonding, which also plays an important role in the self-assembly of synthetic polymers in aqueous solutions. Proton-accepting polymers can associate with proton-donating polymers via hydrogen bonding in aqueous solutions and form polymer-polymer or interpolymer complexes. There has been an increased interest among researchers in hydrogen-bonded interpolymer complexes since the first pioneering papers were published in the early 1960s. Several hundred research papers have been published on various aspects of complex formation reactions in solutions and interfaces, properties of interpolymer complexes and their potential applications. This book focuses on the latest developments in the area of interpolymer complexation via hydrogen bonding. It represents a collection of original and review articles written by recognized experts from Germany, Greece, Kazakhstan, Poland, Romania, Russia, UK, Ukraine, and the USA. It highlights many important applications of interpolymer complexes, including the stabilization of colloidal systems, pharmaceuticals, and nanomaterials.
Resumo:
Most gram-negative pathogens express fibrous adhesive virulence organelles that mediate targeting to the sites of infection. The F1 capsular antigen from the plague pathogen Yersinia pestis consists of linear fibers of a single subunit (Caf1) and serves as a prototype for nonpilus organelles assembled via the chaperone/usher pathway. Genetic data together with high-resolution X-ray structures corresponding to snapshots of the assembly process reveal the structural basis of fiber formation. Comparison of chaperone bound Caf1 subunit with the subunit in the fiber reveals a novel type of conformational change involving the entire hydrophobic core of the protein. The observed conformational change suggests that the chaperone traps a high-energy folding intermediate of Caf1. A model is proposed in which release of the subunit allows folding to be completed, driving fiber formation.
Resumo:
Equilibrium study on complex formation of Co(II), Ni(II), Cu(II) and Zn(II), hereafter M(II), with the quadridentate (O-, N, O-, N) donor ligand, N-(2-hydroxybenzyl)-L-histidine (H(2)hb-L-his, hereafter H2L), in the absence and in the presence of typical (N, N) donor bidentate ligands, 1,10 phenanthroline(phen), 2, 2'-bipyridine(bipy), ethylenediamine(en), hereafter B, in aqueous solution at 25 +/- 1 degrees C was done at a fixed ionic strength, I = 0.1 mol dm(-3) (NaNO3) by combined pH-metric, UV-Vis and EPR measurements provide evidence for the formation of mononuclear and dinuclear binary and mixed ligand complexes of the types: M(L), M(L)(2)(2-), M-2(L)(2+), M-2(H-1L)(+), M(L)(B), (B)M(H-1L)M(B)(+). The imidazole moiety of the ligand is found to act as a bridging bidentate ligand in the dinuclear M-2(L)(2+), M-2(H-1L)(+) and (B)M(H-1L)M(B)(+) complexes, using its N-3 atom and N1-H deprotonated moiety. Stability constants of the complexes provide evidence of discrimination of Cu(II) from the other M(II) ions by this ligand. Solid complexes: [Ni(L)(H2O)(2)] (1), [Cu(L)(H2O)] (2), and [Ni(L)(bipy)] (.) H2O (3) have been isolated and characterized by various physicochemical studies. Single crystal X-ray diffraction of the ternary complex, 3, shows an octahedral [(O-,N,N,O-)(N,N)] geometry with extensive pi-pi stacking of the aromatic rings and H-bonding with imidazole (N1-H), secondary amino N-atom, the lattice H2O molecule, and the carboxylate and phenolate O-atoms. (c) 2006 Elsevier B.V. All rights reserved.