3 resultados para Semiconducting cadmium compounds
em CentAUR: Central Archive University of Reading - UK
Resumo:
Three new polymeric complexes [Cd(hmt)(SCN)(2)(H2O)(2)](n) (1), [Cd-3(mu(2)-hmt)(2)(SCN)(6)(H2O)(2)](n) (2), and [Cd-2(hmt)(2)(tP)(2)(H2O)(6)](n) (3) [hmt = hexamethylenetetramine, tp = terephthalate] have been synthesized and characterized by single crystal X-ray diffraction. Both the compounds 1 and 2 are 1-D polymers where Cd units are linked by double end-to-end thiocyanate bridges but in 2 the chain is wider containing three cadmium atoms instead of one as found in 1. In both compounds the coordination environment around cadmium atom is distorted octahedral. Compound 3 is a three-dimensional polymer having water-filled microporous channels. Both tp and brut are mu(2)-bridged. One of the acid groups of tp is coordinated in chelating bidentate and the other in monodentate fashion. Half of its Cd atoms are hexa-coordinated and the rest are hepta-coordinated. Thermogravimetric analysis and X-ray diffraction study of 3 show that its framework remains intact upon removal of water molecules. The flexibility of coordination number around cadmium atoms (six or seven) probably plays an important role in establishing the rigidity of the framework. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The health risks associated with the inhalation or ingestion of cadmium are well documented([1,2]). During the past 18 years, EU legislation has steadily been introduced to restrict its use, leaving a requirement for the development of replacement materials. This paper looks at possible alternatives to various cadmium II-VI dielectric compounds used in the deposition of optical thin-films for various opto-electronic devices. Application areas of particular interest are for infrared multilayer interference filter fabrication and solar cell industries, where cadmium-based coatings currently find widespread use. The results of single and multilayer designs comprising CdTe, CdS, CdSe and PbTe deposited onto group IV and II-VI materials as interference filters for the mid-IR region are presented. Thin films of SnN, SnO2, SnS and SnSe are fabricated by plasma assisted CVD, reactive RF sputtering and thermal evaporation. Examination of these films using FTIR spectroscopy, SEM, EDX analysis and optical characterisation methods provide details of material dispersion, absorption, composition, refractive index, energy band gap and layer thicknesses. The optimisation of deposition parameters in order to synthesise coatings with similar optical and semiconductor properties as those containing cadmium has been investigated. Results of environmental, durability and stability trials are also presented.
Resumo:
Increasing legislation has steadily been introduced throughout the world to restrict the use of heavy metals, particularly cadmium (Cd) and lead (Pb) in high temperature pigments, ceramics, and optoelectronic material applications. Removal of cadmium from thin-film optical and semiconductor device applications has been hampered by the absence of viable alternatives that exhibit similar properties with stability and durability. We describe a range of tin-based compounds that have been deposited and characterized in terms of their optical and mechanical properties and compare them with existing cadmium-based films that currently find widespread use in the optoelectronic and semiconductor industries. (c) 2008 Optical Society of America.