7 resultados para Semantic structure
em CentAUR: Central Archive University of Reading - UK
Resumo:
Software representations of scenes, i.e. the modelling of objects in space, are used in many application domains. Current modelling and scene description standards focus on visualisation dimensions, and are intrinsically limited by their dependence upon their semantic interpretation and contextual application by humans. In this paper we propose the need for an open, extensible and semantically rich modelling language, which facilitates a machine-readable semantic structure. We critically review existing standards and techniques, and highlight a need for a semantically focussed scene description language. Based on this defined need we propose a preliminary solution, based on hypergraph theory, and reflect on application domains.
Resumo:
Competency management is a very important part of a well-functioning organisation. Unfortunately competency descriptions are not uniformly specified nor defined across borders: National, sectorial or organisational, leading to an opaque competency description market with a multitude of competency frameworks and competency benchmarks. An ontology is a formalised description of a domain, which enables automated reasoning engines to be built which by utilising the interrelations between entities can make “intelligent” choices in different situations within the domain. Introducing formalised competency ontologies automated tools, such as skill gap analysis, training suggestion generation, job search and recruitment, can be developed, which compare and contrast different competency descriptions on the semantic level. The major problem with defining a common formalised ontology for competencies is that there are so many viewpoints of competencies and competency frameworks. Work within the TRACE project has focused on finding common trends within different competency frameworks in order to allow an intermediate competency description to be made, which other frameworks can reference. This research has shown that competencies can be divided up into “knowledge”, “skills” and what we call “others”. An ontology has been created based on this with a simple structure of different “kinds” of “knowledges” and “skills” using semantic interrelations to define the basic semantic structure of the ontology. A prototype tool for analysing a skill gap analysis has been developed. Personal profiles can be produced using the tool and a skill gap analysis is performed on a desired competency profile by using an ontologically based inference engine, which is able to list closest fit and possible proficiency gaps
Resumo:
In order to explore the impact of a degraded semantic system on the structure of language production, we analysed transcripts from autobiographical memory interviews to identify naturally-occurring speech errors by eight patients with semantic dementia (SD) and eight age-matched normal speakers. Relative to controls, patients were significantly more likely to (a) substitute and omit open class words, (b) substitute (but not omit) closed class words, (c) substitute incorrect complex morphological forms and (d) produce semantically and/or syntactically anomalous sentences. Phonological errors were scarce in both groups. The study confirms previous evidence of SD patients’ problems with open class content words which are replaced by higher frequency, less specific terms. It presents the first evidence that SD patients have problems with closed class items and make syntactic as well as semantic speech errors, although these grammatical abnormalities are mostly subtle rather than gross. The results can be explained by the semantic deficit which disrupts the representation of a pre-verbal message, lexical retrieval and the early stages of grammatical encoding.
Resumo:
The storage and processing capacity realised by computing has lead to an explosion of data retention. We now reach the point of information overload and must begin to use computers to process more complex information. In particular, the proposition of the Semantic Web has given structure to this problem, but has yet realised practically. The largest of its problems is that of ontology construction; without a suitable automatic method most will have to be encoded by hand. In this paper we discus the current methods for semi and fully automatic construction and their current shortcomings. In particular we pay attention the application of ontologies to products and the particle application of the ontologies.
Resumo:
Search engines exploit the Web's hyperlink structure to help infer information content. The new phenomenon of personal Web logs, or 'blogs', encourage more extensive annotation of Web content. If their resulting link structures bias the Web crawling applications that search engines depend upon, there are implications for another form of annotation rapidly on the rise, the Semantic Web. We conducted a Web crawl of 160 000 pages in which the link structure of the Web is compared with that of several thousand blogs. Results show that the two link structures are significantly different. We analyse the differences and infer the likely effect upon the performance of existing and future Web agents. The Semantic Web offers new opportunities to navigate the Web, but Web agents should be designed to take advantage of the emerging link structures, or their effectiveness will diminish.
Resumo:
In this study of the structure of self-knowledge, we examined priming effects for the recall of personal episodes in order to investigate whether abstract trait knowledge and personal episodes are independent mental representations. We found that accessing similar abstract representations of traits facilitated a faster recall of related personal episodes than did accessing irrelevant abstract representations of traits (Experiments 1 and 2), reading a nonword prime (Experiments 2 and 3), accessing knowledge of one's mother (Experiment 3), or accessing semantic knowledge (Experiment 3). Contrary to previous findings, which indicated that abstract trait knowledge is represented independently of related personal episodes (e.g., Klein & Loftus, 1993, our results suggest that abstract trait knowledge is associated with personal episodes, and therefore that semantic self-knowledge is associated with episodic self-knowledge in long-term self-knowledge.
Resumo:
Building Information Modeling (BIM) is the process of structuring, capturing, creating, and managing a digital representation of physical and/or functional characteristics of a built space [1]. Current BIM has limited ability to represent dynamic semantics, social information, often failing to consider building activity, behavior and context; thus limiting integration with intelligent, built-environment management systems. Research, such as the development of Semantic Exchange Modules, and/or the linking of IFC with semantic web structures, demonstrates the need for building models to better support complex semantic functionality. To implement model semantics effectively, however, it is critical that model designers consider semantic information constructs. This paper discusses semantic models with relation to determining the most suitable information structure. We demonstrate how semantic rigidity can lead to significant long-term problems that can contribute to model failure. A sufficiently detailed feasibility study is advised to maximize the value from the semantic model. In addition we propose a set of questions, to be used during a model’s feasibility study, and guidelines to help assess the most suitable method for managing semantics in a built environment.