72 resultados para Semantic differential
em CentAUR: Central Archive University of Reading - UK
Resumo:
This research explores whether patterns of typographic differentiation influence readers’ impressions of documents. It develops a systematic approach to typographic investigation that considers relationships between different kinds of typographic attributes, rather than testing the influence of isolated variables. An exploratory study using multiple sort tasks and semantic differential scales identifies that readers form a variety of impressions in relation to how typographic elements are differentiated in document design. Building on the findings of the exploratory study and analysis of a sample of magazines, the research describes three patterns of typographic differentiation: high, moderate, and low. Each pattern comprises clusters of typographic attributes and organisational principles that are articulated in relation to a specified level of typographic differentiation (amplified, medium, or subtle). The patterns are applied to two sets of controlled test material. Using this purposely-designed material, the influence of patterns of typographic differentiation on readers’ impressions of documents is explored in a repertory grid analysis and a paired comparison procedure. The results of these studies indicate that patterns of typographic differentiation consistently shape readers’ impressions of documents, influencing judgments of credibility, document address, and intended readership; and suggesting particular kinds of engagement and genre associations. For example, high differentiation documents are likely to be considered casual, sensationalist, and young; moderate differentiation documents are most likely to be seen as formal and serious; and low differentiation examples are considered calm. Typographic meaning is shown to be created through complex, yet systematic, interrelationships rather than reduced to a linear model of increasing or decreasing variation. The research provides a way of describing typographic articulation that has application across a variety of disciplines and design practice. In particular, it illuminates the ways in which typographic presentation is meaningful to readers, providing knowledge that document producers can use to communicate more effectively.
Resumo:
Past studies have revealed that encountering negative events interferes with cognitive processing of subsequent stimuli. The present study investigates whether negative events affect semantic and perceptual processing differently. Presentation of negative pictures produced slower reaction times than neutral or positive pictures in tasks that require semantic processing, such as natural or man-made judgments about drawings of objects, commonness judgments about objects, and categorical judgments about pairs of words. In contrast, negative picture presentation did not slow down judgments in subsequent perceptual processing (e.g., color judgments about words, size judgments about objects). The subjective arousal level of negative pictures did not modulate the interference effects on semantic or perceptual processing. These findings indicate that encountering negative emotional events interferes with semantic processing of subsequent stimuli more strongly than perceptual processing, and that not all types of subsequent cognitive processing are impaired by negative events.
Resumo:
Previous functional imaging studies have shown that facilitated processing of a visual object on repeated, relative to initial, presentation (i.e., repetition priming) is associated with reductions in neural activity in multiple regions, including fusiforin/lateral occipital cortex. Moreover, activity reductions have been found, at diminished levels, when a different exemplar of an object is presented on repetition. In one previous study, the magnitude of diminished priming across exemplars was greater in the right relative to the left fusiform, suggesting greater exemplar specificity in the right. Another previous study, however, observed fusiform lateralization modulated by object viewpoint, but not object exemplar. The present fMRI study sought to determine whether the result of differential fusiform responses for perceptually different exemplars could be replicated. Furthermore, the role of the left fusiform cortex in object recognition was investigated via the inclusion of a lexical/semantic manipulation. Right fusiform cortex showed a significantly greater effect of exemplar change than left fusiform, replicating the previous result of exemplar-specific fusiform lateralization. Right fusiform and lateral occipital cortex were not differentially engaged by the lexical/semantic manipulation, suggesting that their role in visual object recognition is predominantly in the. C visual discrimination of specific objects. Activation in left fusiform cortex, but not left lateral occipital cortex, was modulated by both exemplar change and lexical/semantic manipulation, with further analysis suggesting a posterior-to-anterior progression between regions involved in processing visuoperceptual and lexical/semantic information about objects. The results are consistent with the view that the right fusiform plays a greater role in processing specific visual form information about objects, whereas the left fusiform is also involved in lexical/semantic processing. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.
Resumo:
The storage and processing capacity realised by computing has lead to an explosion of data retention. We now reach the point of information overload and must begin to use computers to process more complex information. In particular, the proposition of the Semantic Web has given structure to this problem, but has yet realised practically. The largest of its problems is that of ontology construction; without a suitable automatic method most will have to be encoded by hand. In this paper we discus the current methods for semi and fully automatic construction and their current shortcomings. In particular we pay attention the application of ontologies to products and the particle application of the ontologies.
Resumo:
Currently many ontologies are available for addressing different domains. However, it is not always possible to deploy such ontologies to support collaborative working, so that their full potential can be exploited to implement intelligent cooperative applications capable of reasoning over a network of context-specific ontologies. The main problem arises from the fact that presently ontologies are created in an isolated way to address specific needs. However we foresee the need for a network of ontologies which will support the next generation of intelligent applications/devices, and, the vision of Ambient Intelligence. The main objective of this paper is to motivate the design of a networked ontology (Meta) model which formalises ways of connecting available ontologies so that they are easy to search, to characterise and to maintain. The aim is to make explicit the virtual and implicit network of ontologies serving the Semantic Web.
Resumo:
We study ordinary nonlinear singular differential equations which arise from steady conservation laws with source terms. An example of steady conservation laws which leads to those scalar equations is the Saint–Venant equations. The numerical solution of these scalar equations is sought by using the ideas of upwinding and discretisation of source terms. Both the Engquist–Osher scheme and the Roe scheme are used with different strategies for discretising the source terms.
Resumo:
A scale-invariant moving finite element method is proposed for the adaptive solution of nonlinear partial differential equations. The mesh movement is based on a finite element discretisation of a scale-invariant conservation principle incorporating a monitor function, while the time discretisation of the resulting system of ordinary differential equations is carried out using a scale-invariant time-stepping which yields uniform local accuracy in time. The accuracy and reliability of the algorithm are successfully tested against exact self-similar solutions where available, and otherwise against a state-of-the-art h-refinement scheme for solutions of a two-dimensional porous medium equation problem with a moving boundary. The monitor functions used are the dependent variable and a monitor related to the surface area of the solution manifold. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.