3 resultados para Selection index

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an application of birth-and-death processes on configuration spaces to a generalized mutation4 selection balance model. The model describes the aging of population as a process of accumulation of mu5 tations in a genotype. A rigorous treatment demands that mutations correspond to points in abstract spaces. 6 Our model describes an infinite-population, infinite-sites model in continuum. The dynamical equation which 7 describes the system, is of Kimura-Maruyama type. The problem can be posed in terms of evolution of states 8 (differential equation) or, equivalently, represented in terms of Feynman-Kac formula. The questions of interest 9 are the existence of a solution, its asymptotic behavior, and properties of the limiting state. In the non-epistatic 10 case the problem was posed and solved in [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 11 35(1)]. In our model we consider a topological space X as the space of positions of mutations and the influence of epistatic potentials

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Species-based indices are frequently employed as surrogates for wider biodiversity health and measures of environmental condition. Species selection is crucial in determining an indicators metric value and hence the validity of the interpretation of ecosystem condition and function it provides, yet an objective process to identify appropriate indicator species is frequently lacking. 2. An effective indicator needs to (i) be representative, reflecting the status of wider biodiversity; (ii) be reactive, acting as early-warning systems for detrimental changes in environmental conditions; (iii) respond to change in a predictable way. We present an objective, niche-based approach for species' selection, founded on a coarse categorisation of species' niche space and key resource requirements, which ensures the resultant indicator has these key attributes. 3. We use UK farmland birds as a case study to demonstrate this approach, identifying an optimal indicator set containing 12 species. In contrast to the 19 species included in the farmland bird index (FBI), a key UK biodiversity indicator that contributes to one of the UK Government's headline indicators of sustainability, the niche space occupied by these species fully encompasses that occupied by the wider community of 62 species. 4. We demonstrate that the response of these 12 species to land-use change is a strong correlate to that of the wider farmland bird community. Furthermore, the temporal dynamics of the index based on their population trends closely matches the population dynamics of the wider community. However, in both analyses, the magnitude of the change in our indicator was significantly greater, allowing this indicator to act as an early-warning system. 5. Ecological indicators are embedded in environmental management, sustainable development and biodiversity conservation policy and practice where they act as metrics against which progress towards national, regional and global targets can be measured. Adopting this niche-based approach for objective selection of indicator species will facilitate the development of sensitive and representative indices for a range of taxonomic groups, habitats and spatial scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This letter presents an effective approach for selection of appropriate terrain modeling methods in forming a digital elevation model (DEM). This approach achieves a balance between modeling accuracy and modeling speed. A terrain complexity index is defined to represent a terrain's complexity. A support vector machine (SVM) classifies terrain surfaces into either complex or moderate based on this index associated with the terrain elevation range. The classification result recommends a terrain modeling method for a given data set in accordance with its required modeling accuracy. Sample terrain data from the lunar surface are used in constructing an experimental data set. The results have shown that the terrain complexity index properly reflects the terrain complexity, and the SVM classifier derived from both the terrain complexity index and the terrain elevation range is more effective and generic than that designed from either the terrain complexity index or the terrain elevation range only. The statistical results have shown that the average classification accuracy of SVMs is about 84.3% ± 0.9% for terrain types (complex or moderate). For various ratios of complex and moderate terrain types in a selected data set, the DEM modeling speed increases up to 19.5% with given DEM accuracy.