103 resultados para Seed longevity
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background and Aims The negative logarithmic relationship between orthodox seed longevity and moisture content in hermetic storage is subject to a low-moisture-content limit (m(c)), but is m(c) affected by temperature? Methods Red clover (Trifolium pratense) and alfalfa (Medicago sativa) seeds were stored hermetically at 12 moisture contents (2-15 %) and five temperatures (-20, 30, 40, 50 and 65 degrees C) for up to 14.5 years, and loss in viability was estimated. Key Results Viability did not change during 14.5 years hermetic storage at -20 degrees C with moisture contents from 2.2 to 14.9 % for red clover, or 2.0 to 12.0 % for alfalfa. Negative logarithmic relationships between longevity and moisture contents > m(c) were detected at 30-65 degrees C, with discontinuities at low moisture contents; m(c) varied between 4.0 and 5.4 % (red clover) or 4.2 and 5.5 % (alfalfa), depending upon storage temperature. Within the ranges investigated, a reduction in moisture content below m(c) at any one temperature had no effect on longevity. Estimates of m(c) were greater the cooler the temperature, the relationship (P < 0.01) being curvilinear. Above m(c), the estimates of C-H and C-Q (i.e. the temperature term of the seed viability equation) did not differ (P > 0.10) between species, whereas those of K-E and C-W did (P < 0.001). Conclusions The low-moisture-content limit to negative logarithmic relationships between seed longevity and moisture content in hermetic storage increased the cooler the storage temperature, by approx. 1.5 % over 35 degrees C (4.0-4.2 % at 65 degrees C to 5.4-5.5 % at 30-40 degrees C) in these species. Further reduction in moisture content was not damaging. The variation in m(c) implies greater sensitivity of longevity to temperature above, compared with below, m(c). This was confirmed (P < 0.005).
Resumo:
In seed storage research, moisture content can be maintained by providing a stable relative humidity (e.g. over saturated salt solutions) or by hermetic storage, but the two approaches provide different gaseous environments which might affect longevity. Seeds of timothy (Phleum pratense L.) and sesame (Sesamum indicum L.) were stored at 45 degrees C or 50 degrees C, respectively, with different moisture contents maintained by hermetic storage in laminated-aluminium-foil packets, or by desiccators above either saturated salt solutions or moistened silica gel. Seeds were withdrawn from storage at intervals from 1 to 28 d for up to 480 d and viability estimated. Within a species, the negative logarithmic relation between seed longevity and moisture content did not differ (P> 0.25, timothy; >0.05, sesame) between storage in desiccators over either moistened silica gel or saturated salt solutions, whereas the relation was much steeper (P< 0.005) in hermetic storage: longevity was similar at high moisture contents, but at low values much greater with hermetic storage. This effect of storage method on seed longevity's sensitivity to moisture content implies that oxygen is relatively more deleterious to seeds at lower than at greater moisture contents and confirms that hermetic storage is preferable for long-term seed storage at low moisture contents.
Resumo:
Pea (Pisum sativum L.) mutant near-isogenic lines (RRrbrb, rrRbRb, rrrbrb) with lower starch but higher lipid contents, brought about by lesions in the starch biosynthetic pathway, had seed moisture sorption isotherms displaced below that of the wild type (RRRbRb). The negative logarithmic relationship between seed longevity and seed storage moisture content (%, f.wt basis), determined in hermetic storage at 65 degreesC, also differed: longevity in the mutant near-isogenic lines was poorer and less sensitive to moisture content than in the wild type (i.e. C-w was lower). The low-moisture-content limit (m(c)) to this relation also differed, being lower in the mutant near-isogenic lines (5.4-5.9%) than in the wild type (6.1%). In contrast, all four near-isogenic lines showed no difference (P >0.25) in the negative semilogarithmic relationship between equilibrium relative humidity (ERH) and seed longevity. It is concluded that the effect of these alleles at the r and rb loci on seed longevity. was largely indirect; a consequence of their effect on seed composition and hence on moisture sorption isotherms. However, this explanation could not be invoked at moisture contents below mc where differences in longevity remained substantial (RRRbRb double that of rrrbrb). Hence, these mutant alleles affected seed longevity directly at very low moisture contents.
Resumo:
Pea (Pisum sativum L.) mutant near-isogenic lines (RRrbrb, rrRbRb, rrrbrb) with lower starch but higher lipid contents, brought about by lesions in the starch biosynthetic pathway, had seed moisture sorption isotherms displaced below that of the wild type (RRRbRb). The negative logarithmic relationship between seed longevity and seed storage moisture content (%, f.wt basis), determined in hermetic storage at 65 °C, also differed: longevity in the mutant near-isogenic lines was poorer and less sensitive to moisture content than in the wild type (i.e. CW was lower). The low-moisture-content limit (mc) to this relation also differed, being lower in the mutant near-isogenic lines (5.4–5.9%) than in the wild type (6.1%). In contrast, all four near-isogenic lines showed no difference (P >0.25) in the negative semi-logarithmic relationship between equilibrium relative humidity (ERH) and seed longevity. It is concluded that the effect of these alleles at the r and rb loci on seed longevity was largely indirect; a consequence of their effect on seed composition and hence on moisture sorption isotherms. However, this explanation could not be invoked at moisture contents below mc where differences in longevity remained substantial (RRRbRb double that of rrrbrb). Hence, these mutant alleles affected seed longevity directly at very low moisture contents.
Resumo:
Poor wheat seed quality in temperate regions is often ascribed to wet production environments. We investigated the possible effect of simulated rain during seed development and maturation on seed longevity in wheat (Triticum aestivum L.) cv. Tybalt grown in the field (2008, 2009) or a polythene tunnel house (2010). To mimic rain, the seed crops were wetted from above with the equivalent of 30mm (2008, 2009) or 25mm rainfall (2010) at different stages of seed development and maturation (17 to 58 DAA, days after 50% anthesis), samples harvested serially, and subsequent air-dry seed longevity estimated. No pre-harvest sprouting occurred. Seed longevity (p50, 50% survival period in experimental hermetic storage at 40°C with c. 15% moisture content) in field-grown controls increased during seed development and maturation attaining maxima at 37 (2008) or 44 DAA (2009); it declined thereafter. Immediate effects of simulated rain at 17-58 DAA in field studies (2008, 2009) on subsequent seed longevity were negative but small, e.g. a 1-4 d delay in seed quality improvement for treatments early in development but with no damage detected at final harvests. In rainfall-protected conditions (2010), simulated rain close to harvest maturity (55-56 DAA) reduced longevity immediately and substantially, with greater damage from two sequential days of wetting than one; again, later harvests provided evidence of recovery in subsequent longevity. In the absence of pre-harvest sprouting, the potentially deleterious effects of rainfall to wheat seed crops on subsequent seed longevity may be reversible in full or in part.
Resumo:
Unpredictable flooding is a major constraint to rice production. It can occur at any growth stage. The effect of simulated flooding post-anthesis on yield and subsequent seed quality of pot-grown rice (Oryza sativa L.) plants was investigated in glasshouses and controlled-environment growth cabinets. Submergence post-anthesis (9-40 DAA) for 3 or 5 days reduced seed weight of japonica rice cv. Gleva, with considerable pre-harvest sprouting (up to 53%). The latter was greater the later in seed development and maturation that flooding occurred. Sprouted seed had poor ability to survive desiccation or germinate normally upon rehydration, whereas the effects of flooding on the subsequent air-dry seed storage longevity (p50) of the non-sprouted seed fraction was negligible. The indica rice cvs IR64 and IR64Sub1 (introgression of submergence tolerance gene Submergence1A-1) were both far more tolerant to flooding post-anthesis than cv. Gleva: four days’ submergence of these two near-isogenic cultivars at 10-40 DAA resulted less than 1% sprouted seeds. The presence of the Sub1A-1 allele in cv. IR64Sub1 was verified by gel electrophoresis and DNA sequencing. It had no harmful effect on loss in seed viability during storage compared with IR64 in both control and flooded environments. Moreover, the germinability and changes in dormancy during seed development and maturation were very similar to IR64. The efficiency of using chemical spray to increase seed dormancy was investigated in the pre-harvest sprouting susceptible rice cv. Gleva. Foliar application of molybdenum at 100 mg L-1 reduced sprouted seeds by 15-21% following 4 days’ submergence at 20-30 DAA. Analyses confirmed that the treatment did result in molybdenum uptake by the plants, and also tended to increase seed abscisic acid concentration. The latter was reduced by submergence and declined exponentially during grain ripening. The selection of submergence-tolerant varieties was more successful than application of molybdenum in reducing pre-harvest sprouting.
Resumo:
Background and Aims: Using two parental clones of outcrossing Trifolium ambiguum as a potential model system, we examined how during seed development the maternal parent, number of seeds per pod, seed position within the pod, and pod position within the inflorescence influenced individual seed fresh weight, dry weight, water content, germinability, desiccation tolerance, hardseededness, and subsequent longevity of individual seeds. Methods: Near simultaneous, manual reciprocal crosses were carried out between clonal lines for two experiments. Infructescences were harvested at intervals during seed development. Each individual seed was weighed and then used to determine dry weight or one of the physiological behaviour traits. Key Results: Whilst population mass maturity was reached at 33–36 days after pollination (DAP), seed-to-seed variation in maximum seed dry weight, when it was achieved, and when maturation drying commenced, was considerable. Individual seeds acquired germinability between 14 and 44 DAP, desiccation tolerance between 30 and 40 DAP, and the capability to become hardseeded between 30 and 47 DAP. The time for viability to fall to 50 % (p50) at 60 % relative humidity and 45 °C increased between 36 and 56 DAP, when the seed coats of most individuals had become dark orange, but declined thereafter. Individual seed f. wt at harvest did not correlate with air-dry storage survival period. Analysing survival data for cohorts of seeds reduced the standard deviation of the normal distribution of seed deaths in time, but no sub-population showed complete uniformity of survival period. Conclusions: Variation in individual seed behaviours within a developing population is inherent and inevitable. In this outbreeder, there is significant variation in seed longevity which appears dependent on embryo genotype with little effect of maternal genotype or architectural factors.
Resumo:
The response of seed survival to storage duration and environment (temperature and moisture content) in the four tropical tree species: Cedrela odorata L., Ceiba pentandra (L.) Gaertn., Dalbergia spruceana Benth. and Tabebuia alba (Cham.) Sandwith. from Amazonia conformed to the seed viability equation of Ellis and Roberts. Estimates of the seed viability constants to calculate seed longevity in these species are provided.
Resumo:
The objective of this work was to determine the viability equation constants for cottonseed and to detect the occurrence and depletion of hardseededness. Three seedlots of Brazilian cultivars IAC-19 and IAC-20 were tested, using 12 moisture content levels, ranging from 2.2 to 21.7% and three storage temperatures, 40, 50 and 65 degrees C. Seed moisture content level was reached from the initial value (around 8.8%) either by rehydration, in a closed container, or by drying in desiccators containing silica gel, both at 20 degrees C. Twelve seed subsamples for each moisture content/temperature treatment were sealed in laminated aluminium-foil packets and stored in incubators at those temperatures, until complete survival curves were obtained. Seed equilibrium relative humidity was recorded. Hardseededness was detected at moisture content levels below 6% and its releasing was achieved either naturally, during storage period, or artificially through seed coat removal. The viability equation quantified the response of seed longevity to storage environment well with K-E = 9.240, C-W = 5.190, C-H = 0.03965 and C-Q = 0.000426. The lower limit estimated for application of this equation at 65 degrees C was 3.6% moisture content.
Resumo:
• Background and Aims Earlier studies have suggested that the drying conditions routinely used by genebanks may not be optimal for subsequent seed longevity. The aim of this study was to compare the effect of hot-air drying with low temperature drying on subsequent seed longevity for 20 diverse rice accessions and to consider how factors related to seed production history might influence the results. • Methods Seeds were produced according to normal regeneration procedures at IRRI. They were harvested at different times (harvest date and days after anthesis (DAA), once for each accession) and dried either in a drying room (DR; 15% RH, 15°C), or in a flat-bed heated-air batch dryer (BD; 45°C, 8 h d-1) for up to 6 daily cycles followed by drying in the DR. Relative longevity was assessed by storage at 10.9% moisture content (m.c.) and 45°C. • Key Results Initial drying in the BD resulted in significantly greater longevity compared with the DR for 14 accessions (seed lots): the period of time for viability to fall to 50% for seeds dried in the BD as a percentage of that for seeds dried throughout in the DR varied between 1.3 and 372.2% for these 14 accessions. The seed lots that responded the most were harvested earlier in the season and at higher moisture content. Drying in the BD did not reduce subsequent longevity compared with DR drying for any of the remaining accessions. • Conclusions Seeds harvested at a m.c. where, according to the moisture desorption isotherm, they could still be metabolically active (>16.2%), may be in the first stage of the post-mass maturity, desiccation phase of seed development and able to increase longevity in response to hot-air drying. The genebank standards regarding seed drying for rice and, perhaps, for other tropical species should be reconsidered.
Resumo:
Seed quality may be compromised if seeds are harvested before natural dispersal (shedding). It has been shown previously that slow or delayed drying can increase potential quality compared with immediate rapid drying. This study set out to investigate whether or not there is a critical moisture content, below which drying terminates maturation events for seeds harvested after mass maturity but before dispersal. Seeds of foxglove (Digitalis purpurea) in the post-abscission pre-dispersal phase were held at between 15 and 95 % RH for 4 or 8 d, with or without re-hydration to 95 % RH for a further 4 d, before drying to equilibrium at 15 % RH. In addition, dry seeds were primed for 48 h at -1 MPa. Subsequent seed longevity was assessed at 60 % RH and 45 degrees C. Rate of germination and longevity were improved by holding seeds at a wide range of humidities after harvest. Longevity was further improved by re-hydration at 95 % RH. Priming improved the longevity of the seeds dried immediately after harvest, but not of those first held at 95 % RH for 8 d prior to drying. Maturation continued ex planta in these post-abscission, pre-dispersal seeds of D. purpurea dried at 15-80 % RH at a rate correlated positively with RH (cf. ageing of mature seeds). Subsequent re-hydration at 95 % RH enabled a further improvement in quality. Priming seeds initially stored air-dry for 3 months also allowed maturation events to resume. However, once individual seeds within the population had reached maximum longevity, priming had a negative impact on their subsequent survival.
Resumo:
Most priming studies have been conducted on commercial seed lots of unspecified uniformity and maturity, and subsequent seed longevity has been reported to both increase and decrease. Here a seed lot of Digitalis purpurea L. with relatively uniform maturity and known history was used to analyse the effects of priming on seed longevity in air-dry storage. Seeds collected close to natural dispersal and dried at 15 % relative humidity (RH), 15 degrees C, were placed into experimental storage (60 % RH, 45 degrees C) for 14 or 28 d, primed for 48 h at 0, -1, -2, -5, -10 or -15 MPa, re-equilibrated (47 % RH, 20 degrees C) and then returned to storage. Further seed samples were primed for 2 or 48 h at -1 MPa and either dried at 15 % RH, 15 degrees C or immediately re-equilibrated for experimental storage. Finally, some seeds were given up to three cycles of experimental storage and priming (48 h at -1 MPa). Priming at -1 MPa had a variable effect on subsequent survival during experimental storage. The shortest lived seeds in the control population showed slightly increased life spans; the longer lived seeds showed reduced life spans. In contrast, seeds first stored for 14 or 28 d before priming had substantially increased life spans. The increase tended to be greatest in the shortest lived fraction of the seed population. Both the period of rehydration and the subsequent drying conditions had significant effects on longevity. Interrupting air-dry storage with additional cycles of priming also increased longevity. The extent of prior deterioration and the post-priming desiccation environment affect the benefits of priming to the subsequent survival of mature seeds. Rehydration-dehydration treatments may have potential as an adjunct or alternative to the regeneration of seed accessions maintained in gene banks for plant biodiversity conservation or plant breeding.
Resumo:
Seeds of 39 seed lots of a total of twelve different crops were stored hermetically in a wide range of air-dry environments (2-25% moisture content at 0-50 degrees C), viability assessed periodically, and the seed viability equation constants estimated. Within a species, estimates of the constants which quantify absolute longevity (K-E) and the relative effects on longevity of moisture content (C-W) and temperature (C-H and C-Q) did not differ (P >0.05 to P >0.25) among lots. Comparison among the 12 crops provided variant estimates of K-E and C-W (P< 0.01), but common values of C-H and C-Q (0.0322 and 0.000454, respectively, P >0.25). Maize (Zea mays) provided the greatest estimate of K-E (9.993, s.e.= 0.456), followed by sorghum (Sorghum bicolor) (9.381, s.e. 0.428), pearl millet (Pennisetum typhoides) (9.336, s.e.= 0.408), sugar beet (Beta vulgaris) (8.988, s.e.= 0.387), African rice (Oryza glaberrima) (8.786, s.e.= 0.484), wheat (Triticum aestivum) (8.498, s.e.= 0.431), foxtail millet (Setaria italica) (8.478, s.e.= 0.396), sugarcane (Saccharum sp.) (8.454, s.e.= 0.545), finger millet (Eleusine coracana) (8.288, s.e.= 0.392), kodo millet (Paspalum scrobiculatum) (8.138, s.e.= 0.418), rice (Oryza sativa) (8.096, s.e.= 0.416) and potato (Solanum tuberosum) (8.037, s.e.= 0.397). Similarly, estimates of C-W were ranked maize (5.993, s.e.= 0.392), pearl millet (5.540, s.e.= 0.348), sorghum (5.379, s.e.=0.365), potato (5.152, s.e.= 0.347), sugar beet (4.969, s.e.= 0.328), sugar cane (4.964, s.e.= 0.518), foxtail millet (4.829, s.e.= 0.339), wheat (4.836, s.e.= 0.366), African rice (4.727, s.e.= 0.416), kodo millet (4.435, s.e.= 0.360), finger millet (4.345, s.e.= 0.336) and rice (4.246, s.e.= 0.355). The application of these constants to long-term seed storage is discussed.
Resumo:
Nothofagus alpina, N. obliqua, N. glauca, N. leonii, N. dombeyi and N. pumilio seeds exhibited consistent, albeit slight, sensitivity to extreme desiccation, but nevertheless maintained viability at low moisture contents and cool temperatures (-10 degrees to -20 degrees C) over 2 years. Nothofagus alpina, N. obliqua, N. glauca, N. leonii and N. dombeyi conformed to the seed viability equation of Ellis and Roberts; sensitivity of longevity to temperature was quantitatively similar to that of crop seeds, sensitivity to moisture was somewhat less, and a low-moisture-content limit to the equation was detected at 4.8% moisture content in hermetic storage at 65 degrees C, and possibly similar moisture contents at 30-40 degrees C. These five species show orthodox seed storage behaviour. Therefore, ex-situ conservation of these Nothofagus species in seed banks is possible, but the quality of seed lots collected requires attention. Seed storage behaviour was not defined in N. pumilio: initial seed quality was poor and loss of viability was detected over 2 years at 0 degrees, -10 degrees and -20 degrees C at 2.7% moisture content, but not at 5.2%. The results confirm that the economy of nature in seed storage physiology extends to forest tree seeds, but the repeated observation of reduced sensitivity of longevity to moisture in forest tree seeds requires further investigation.