89 resultados para Seed germinations
em CentAUR: Central Archive University of Reading - UK
Resumo:
Paternity analysis based on eight microsatellite loci was used to investigate pollen and seed dispersal patterns of the dioecious wind- pollinated tree, Araucaria angustifolia. The study sites were a 5.4 ha isolated forest fragment and a small tree group situated 1.7 km away, located in Paran alpha State, Brazil. In the forest fragment, 121 males, 99 females, 66 seedlings and 92 juveniles were mapped and genotyped, together with 210 seeds. In the tree group, nine male and two female adults were mapped and genotyped, together with 20 seeds. Paternity analysis within the forest fragment indicated that at least 4% of the seeds, 3% of the seedlings and 7% of the juveniles were fertilized by pollen from trees in the adjacent group, and 6% of the seeds were fertilized by pollen from trees outside these stands. The average pollination distance within the forest fragment was 83 m; when the tree group was included the pollination distance was 2006m. The average number of effective pollen donors was estimated as 12.6. Mother- trees within the fragment could be assigned to all seedlings and juveniles, suggesting an absence of seed immigration. The distance of seedlings and juveniles from their assigned mother- trees ranged from 0.35 to 291m ( with an average of 83m). Significant spatial genetic structure among adult trees, seedlings, and juveniles was detected up to 50m, indicating seed dispersal over a short distance. The effective pollination neighborhood ranged from 0.4 to 3.3 ha. The results suggest that seed dispersal is restricted but that there is longdistance pollen dispersal between the forest fragment and the tree group; thus, the two stands of trees are not isolated.
Resumo:
Response of cotton (Gossypium hirsutum L. cv. NIAB-78) to salinity, in terms of seed germination, seedling root growth and root Na+ and K+ content was determined in a laboratory experiment. Cotton seeds were exposed to increasing salinity levels using germination water with Sodium chloride concentrations of 0, 50, 100, 150 and 200 mM, to provide different degrees of salt stress. Germinated seeds were counted and roots were harvested at 24, 48, 72 and 96 h after the start of the experiment. It appeared that seed germination was only slightly affected by an increase in salinity (in most cases the differences between treatment were non-significant), whereas root length, root growth rate, root fresh and dry weights were severely affected, generally highly significant differences in these variables were found for comparisons involving most combinations of salinity levels, in particular with increased incubation period. K+ contents decreased with increasing salinity levels, although differences in K+ content were only significant when comparing the control and the 4 salinity levels. Na+ content of the roots increased with increasing levels of NaCl in the germination water, suggesting an exchange of K+ for Na+. The ratio K+/Na+ strongly decreased with rising levels of salinity from around 4.5 for the control to similar to 1 at 200 mM NaCl.
Resumo:
1. Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness. 2. A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants’ overall reproductive success and long-term survival. Understanding the relationship between plant population size and⁄ or isolation and pollination limitation is of fundamental importance for plant conservation. 3. Weexamined flower visitation and seed set of 10 different plant species fromfive European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation. 4. Wefound evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations. 5. Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant–pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats.
Resumo:
We have compiled two comprehensive gene expression profiles from mature leaf and immature seed tissue of rice (Oryza sativa ssp. japonica cultivar Nipponbare) using Serial Analysis of Gene Expression (SAGE) technology. Analysis revealed a total of 50 519 SAGE tags, corresponding to 15 131 unique transcripts. Of these, the large majority (approximately 70%) occur only once in both libraries. Unexpectedly, the most abundant transcript (approximately 3% of the total) in the leaf library was derived from a type 3 metallothionein gene. The overall frequency profiles of the abundant tag species from both tissues differ greatly and reveal seed tissue as exhibiting a non-typical pattern of gene expression characterized by an over abundance of a small number of transcripts coding for storage proteins. A high proportion ( approximately 80%) of the abundant tags (> or = 9) matched entries in our reference rice EST database, with many fewer matches for low abundant tags. Singleton transcripts that are common to both tissues were collated to generate a summary of low abundant transcripts that are expressed constitutively in rice tissues. Finally and most surprisingly, a significant number of tags were found to code for antisense transcripts, a finding that suggests a novel mechanism of gene regulation, and may have implications for the use of antisense constructs in transgenic technology.
Resumo:
This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.
Resumo:
The oxalate oxidase enzyme expressed in barley roots is a thermostable, protease-resistant enzyme that generates H2O2. It has great medical importance because of its use to assay plasma and urinary oxalate, and it has also been used to generate transgenic, pathogen-resistant crops. This protein has now been purified and three types of crystals grown. X-ray analysis shows that the symmetry present in these crystals is consistent with a hexameric arrangement of subunits, probably a trimer of dimers. This structure may be similar to that found in the related seed storage proteins.
Resumo:
Plant storage proteins comprise a major part of the human diet. Sequence analysis has revealed that these proteins probably share a common ancestor with a fungal oxalate decarboxylase and/or related bacterial genes. Additionally, all these proteins share a central core sequence with several other functionally diverse enzymes and binding proteins, many of which are associated with synthesis of the extracellular matrix during sporulation/encystment. A possible prokaryotic relative of this sequence is a bacterial protein (SASP) known to bind to DNA and thereby protect spores from extreme environmental conditions. This ability to maintain cell viability during periods of dehydration in spores and seeds may relate to absolute conservation of residues involved in structure determination.
Resumo:
Improved upland rice cultivars introduced in Volta Region, Ghana, have been perceived to store poorly compared to farmers' traditional cultivars. A survey was conducted in 2003 in the Hohoc district of this region, where a participatory Varietal Selection programme had started in 1997, to gain insight into fanners' seed production and storage practices that are likely to affect seed quality in storage. Farmers rated keeping quality (p < 0.001), tolerance to storage pests (p < 0.001), seed quality (p < 0.001) and establishment of their local cultivars Kawomo, Viono and Wuwulili as much better than the improved cultivar IDSA 85. Initial seed moisture content ranged from 12.8 to 18% and germination from 0 to 82%. There was a significant relationship between seed moisture content and duration of drying prior to storage (p < 0.001) and storage method (p = 0.015). Germination loss in storage was rapid at high moisture content and slow at low moisture content. Between 60 and 80% of seeds germinated after six Months storage at 12.8% moisture content. The viability equation predicted accurately germination of farmer-saved seed stored under ambient temperature in Ghana. Except for the japonica rice cultivar WAB 126-18-HB, the traditional cultivars Kawomo, Viono and Wuwulili survived better in storage than improved cultivars. There is a need to improve seed quality of improved cultivars if farmers are to benefit from their higher yields and grain quality and to improve storage practices.
Resumo:
The loss of seed-rich wintering habitats has been a major contributory cause of farmland bird population declines in western Europe. Agricultural grasslands are particularly poor winter foraging habitats for granivorous birds, which have declined most in the pastoral farming regions of western Britain. We describe an experiment to test the utility of fertile ryegrass (Lolium) swards as a potentially rich source of winter seed for declining farmland birds. Four patches of final-cut grass silage were allowed to set seed and were left in situ overwinter. Half of each patch was lightly aftermath grazed in an attempt to increase the accessibility of the seed to foraging birds and reduce the perceived predation risk. Large numbers of yellowhammers (Emberiza citrinella) and reed buntings (E. schoeniclus) foraged on the seeded plots throughout the winter. They preferred to forage on ungrazed seeded plots, where the accumulation of senescent foliage resulted in a 14% average loss in silage yield in the following season. However, seed produced on the plots also led to sward regeneration, increasing subsequent yields on some plots. The technique offers clear benefits as a potential future agri-environment measure for declining granivorous birds, with wide applicability, but requires further development to minimise sward damage and costs to the farmer. Autumn grazing should reduce sward damage, but at the cost of reduced usage by buntings. Using the technique just prior to reseeding would be one way of avoiding any costs of sward damage.
Resumo:
This paper considers the process of Participatory Varietal Selection (PVS) and presents approaches and ideas based on PVS activities conducted on upland rice throughout Ghana between 1997 and 2003. In particular the role of informal seed systems in PVS is investigated and implications for PVS design are identified. PVS programmes were conducted in two main agroecological zones, Forest and Savannah, with 1,578 and 1,143 mm of annual rainfall, respectively, and between 40 and 100 varieties tested at each site. In the Savannah zone IR12979-24-1 was officially released and in the Forest zone IDSA 85 was widely accepted by farmers. Two surveys were conducted in an area of the Forest zone to study mechanisms of spread. Here small amounts (1-2 kg) of seed of selected varieties had been given to 94 farmers. In 2002, 37% of 2,289 farmers in communities surveyed had already grown a PVS variety and had obtained seed via informal mechanisms from other farmers, i.e. through gift, exchange or purchase. A modified approach for PVS is presented which enables important issues identified in the paper to be accommodated. These issues include: utilising existing seed spread mechanisms; facilitating formal release of acceptable varieties; assessing post-harvest traits, and; the need for PVS to be an ongoing and sustainable process.