100 resultados para Security metrics
em CentAUR: Central Archive University of Reading - UK
Resumo:
Since the advent of the internet in every day life in the 1990s, the barriers to producing, distributing and consuming multimedia data such as videos, music, ebooks, etc. have steadily been lowered for most computer users so that almost everyone with internet access can join the online communities who both produce, consume and of course also share media artefacts. Along with this trend, the violation of personal data privacy and copyright has increased with illegal file sharing being rampant across many online communities particularly for certain music genres and amongst the younger age groups. This has had a devastating effect on the traditional media distribution market; in most cases leaving the distribution companies and the content owner with huge financial losses. To prove that a copyright violation has occurred one can deploy fingerprinting mechanisms to uniquely identify the property. However this is currently based on only uni-modal approaches. In this paper we describe some of the design challenges and architectural approaches to multi-modal fingerprinting currently being examined for evaluation studies within a PhD research programme on optimisation of multi-modal fingerprinting architectures. Accordingly we outline the available modalities that are being integrated through this research programme which aims to establish the optimal architecture for multi-modal media security protection over the internet as the online distribution environment for both legal and illegal distribution of media products.
Resumo:
Space weather effects on technological systems originate with energy carried from the Sun to the terrestrial environment by the solar wind. In this study, we present results of modeling of solar corona-heliosphere processes to predict solar wind conditions at the L1 Lagrangian point upstream of Earth. In particular we calculate performance metrics for (1) empirical, (2) hybrid empirical/physics-based, and (3) full physics-based coupled corona-heliosphere models over an 8-year period (1995–2002). L1 measurements of the radial solar wind speed are the primary basis for validation of the coronal and heliosphere models studied, though other solar wind parameters are also considered. The models are from the Center for Integrated Space-Weather Modeling (CISM) which has developed a coupled model of the whole Sun-to-Earth system, from the solar photosphere to the terrestrial thermosphere. Simple point-by-point analysis techniques, such as mean-square-error and correlation coefficients, indicate that the empirical coronal-heliosphere model currently gives the best forecast of solar wind speed at 1 AU. A more detailed analysis shows that errors in the physics-based models are predominately the result of small timing offsets to solar wind structures and that the large-scale features of the solar wind are actually well modeled. We suggest that additional “tuning” of the coupling between the coronal and heliosphere models could lead to a significant improvement of their accuracy. Furthermore, we note that the physics-based models accurately capture dynamic effects at solar wind stream interaction regions, such as magnetic field compression, flow deflection, and density buildup, which the empirical scheme cannot.