36 resultados para Secure and Resilient Infrastructure
em CentAUR: Central Archive University of Reading - UK
Resumo:
The paper analyzes a multicountry extension of the Barro model of productive public expenditure. In the presence of positive infrastructural externalities between countries, the provision of infrastructure will be inefficiently low if countries do not coordinate. This provides a role for a supranational body, such as the European Union, to coordinate the policies of the individual governments. It is shown how intervention by a supranational body can raise welfare by internalizing the infrastructural externality. Infrastructural externalities increase the importance of tax policy in the growth process and distribute the benefits of taxation across countries.
Resumo:
This paper uses long-term regional construction data to investigate whether increases infrastructure investment in the English regions leads to subsequent rises in housebuilding and new commercial property, using time series modeling. Both physical (roads and harbours) and social infrastructure (education and health) impacts are investigated across nine regions in England. Significant effects for physical infrastructure are found across most regions and, also, some evidence of a social infrastructure effect. The results are not consistent across regions, which may be due to geographical differences and to network and diversionary effects. However, the results do suggest that infrastructure does have some impact but follows differential lag structures. These results provide a test of the hypothesis of the economic benefits of infrastructure investment in an approach that has not been used before.
Resumo:
More data will be produced in the next five years than in the entire history of human kind, a digital deluge that marks the beginning of the Century of Information. Through a year-long consultation with UK researchers, a coherent strategy has been developed, which will nurture Century-of-Information Research (CIR); it crystallises the ideas developed by the e-Science Directors' Forum Strategy Working Group. This paper is an abridged version of their latest report which can be found at: http://wikis.nesc.ac.uk/escienvoy/Century_of_Information_Research_Strategy which also records the consultation process and the affiliations of the authors. This document is derived from a paper presented at the Oxford e-Research Conference 2008 and takes into account suggestions made in the ensuing panel discussion. The goals of the CIR Strategy are to facilitate the growth of UK research and innovation that is data and computationally intensive and to develop a new culture of 'digital-systems judgement' that will equip research communities, businesses, government and society as a whole, with the skills essential to compete and prosper in the Century of Information. The CIR Strategy identifies a national requirement for a balanced programme of coordination, research, infrastructure, translational investment and education to empower UK researchers, industry, government and society. The Strategy is designed to deliver an environment which meets the needs of UK researchers so that they can respond agilely to challenges, can create knowledge and skills, and can lead new kinds of research. It is a call to action for those engaged in research, those providing data and computational facilities, those governing research and those shaping education policies. The ultimate aim is to help researchers strengthen the international competitiveness of the UK research base and increase its contribution to the economy. The objectives of the Strategy are to better enable UK researchers across all disciplines to contribute world-leading fundamental research; to accelerate the translation of research into practice; and to develop improved capabilities, facilities and context for research and innovation. It envisages a culture that is better able to grasp the opportunities provided by the growing wealth of digital information. Computing has, of course, already become a fundamental tool in all research disciplines. The UK e-Science programme (2001-06)—since emulated internationally—pioneered the invention and use of new research methods, and a new wave of innovations in digital-information technologies which have enabled them. The Strategy argues that the UK must now harness and leverage its own, plus the now global, investment in digital-information technology in order to spread the benefits as widely as possible in research, education, industry and government. Implementing the Strategy would deliver the computational infrastructure and its benefits as envisaged in the Science & Innovation Investment Framework 2004-2014 (July 2004), and in the reports developing those proposals. To achieve this, the Strategy proposes the following actions: support the continuous innovation of digital-information research methods; provide easily used, pervasive and sustained e-Infrastructure for all research; enlarge the productive research community which exploits the new methods efficiently; generate capacity, propagate knowledge and develop skills via new curricula; and develop coordination mechanisms to improve the opportunities for interdisciplinary research and to make digital-infrastructure provision more cost effective. To gain the best value for money strategic coordination is required across a broad spectrum of stakeholders. A coherent strategy is essential in order to establish and sustain the UK as an international leader of well-curated national data assets and computational infrastructure, which is expertly used to shape policy, support decisions, empower researchers and to roll out the results to the wider benefit of society. The value of data as a foundation for wellbeing and a sustainable society must be appreciated; national resources must be more wisely directed to the collection, curation, discovery, widening access, analysis and exploitation of these data. Every researcher must be able to draw on skills, tools and computational resources to develop insights, test hypotheses and translate inventions into productive use, or to extract knowledge in support of governmental decision making. This foundation plus the skills developed will launch significant advances in research, in business, in professional practice and in government with many consequent benefits for UK citizens. The Strategy presented here addresses these complex and interlocking requirements.
Resumo:
Geological carbon dioxide storage (CCS) has the potential to make a significant contribution to the decarbonisation of the UK. Amid concerns over maintaining security, and hence diversity, of supply, CCS could allow the continued use of coal, oil and gas whilst avoiding the CO2 emissions currently associated with fossil fuel use. This project has explored some of the geological, environmental, technical, economic and social implications of this technology. The UK is well placed to exploit CCS with a large offshore storage capacity, both in disused oil and gas fields and saline aquifers. This capacity should be sufficient to store CO2 from the power sector (at current levels) for a least one century, using well understood and therefore likely to be lower-risk, depleted hydrocarbon fields and contained parts of aquifers. It is very difficult to produce reliable estimates of the (potentially much larger) storage capacity of the less well understood geological reservoirs such as non-confined parts of aquifers. With the majority of its large coal fired power stations due to be retired during the next 15 to 20 years, the UK is at a natural decision point with respect to the future of power generation from coal; the existence of both national reserves and the infrastructure for receiving imported coal makes clean coal technology a realistic option. The notion of CCS as a ‘bridging’ or ‘stop-gap’ technology (i.e. whilst we develop ‘genuinely’ sustainable renewable energy technologies) needs to be examined somewhat critically, especially given the scale of global coal reserves. If CCS plant is built, then it is likely that technological innovation will bring down the costs of CO2 capture, such that it could become increasingly attractive. As with any capitalintensive option, there is a danger of becoming ‘locked-in’ to a CCS system. The costs of CCS in our model for UK power stations in the East Midlands and Yorkshire to reservoirs in the North Sea are between £25 and £60 per tonne of CO2 captured, transported and stored. This is between about 2 and 4 times the current traded price of a tonne of CO2 in the EU Emissions Trading Scheme. In addition to the technical and economic requirements of the CCS technology, it should also be socially and environmentally acceptable. Our research has shown that, given an acceptance of the severity and urgency of addressing climate change, CCS is viewed favourably by members of the public, provided it is adopted within a portfolio of other measures. The most commonly voiced concern from the public is that of leakage and this remains perhaps the greatest uncertainty with CCS. It is not possible to make general statements concerning storage security; assessments must be site specific. The impacts of any potential leakage are also somewhat uncertain but should be balanced against the deleterious effects of increased acidification in the oceans due to uptake of elevated atmospheric CO2 that have already been observed. Provided adequate long term monitoring can be ensured, any leakage of CO2 from a storage site is likely to have minimal localised impacts as long as leaks are rapidly repaired. A regulatory framework for CCS will need to include risk assessment of potential environmental and health and safety impacts, accounting and monitoring and liability for the long term. In summary, although there remain uncertainties to be resolved through research and demonstration projects, our assessment demonstrates that CCS holds great potential for significant cuts in CO2 emissions as we develop long term alternatives to fossil fuel use. CCS can contribute to reducing emissions of CO2 into the atmosphere in the near term (i.e. peak-shaving the future atmospheric concentration of CO2), with the potential to continue to deliver significant CO2 reductions over the long term.
Resumo:
Libya with its strategic location and natural resources stands as a crucial link between the Arab world, Europe, and Africa. The people of Libya have an optimistic outlook with regard to the Libyan economy after the suspension of the United Nations sanctions in 1999 that had been imposed on Libya in 1992, as well as the recent emphasis on privatization from the government. Since then, local and foreign investors have been encouraged to take a more prominent role in order to help privatize some of the state run-industries; the attention to privatization is aimed to help Libya’s economic growth and reduce its heavy dependency on oil revenues. Considering the economic situation, Libya is a rich country. However, it needs to modernize, it needs more and better infrastructure, it needs non-oil based financing, furthermore, it needs to develop a financial model for development and investment from the private sector. Although the Libyan government is working on the improvement of the business environment to make it more attractive for foreign investors in a way to move towards privatization, they have ignored some of the challenges that privatization will be facing in Libya. Privatization can not be implemented overnight. They have taken this for granted without careful consideration of its challenges. This paper attempts to investigate and discuss the challenges that need to be taken into account before privatization of infrastructure projects can be introduced in Libya. This paper is based on interviews with senior technical officials in the government.
Resumo:
Although the use of climate scenarios for impact assessment has grown steadily since the 1990s, uptake of such information for adaptation is lagging by nearly a decade in terms of scientific output. Nonetheless, integration of climate risk information in development planning is now a priority for donor agencies because of the need to prepare for climate change impacts across different sectors and countries. This urgency stems from concerns that progress made against Millennium Development Goals (MDGs) could be threatened by anthropogenic climate change beyond 2015. Up to this time the human signal, though detectable and growing, will be a relatively small component of climate variability and change. This implies the need for a twin-track approach: on the one hand, vulnerability assessments of social and economic strategies for coping with present climate extremes and variability, and, on the other hand, development of climate forecast tools and scenarios to evaluate sector-specific, incremental changes in risk over the next few decades. This review starts by describing the climate outlook for the next couple of decades and the implications for adaptation assessments. We then review ways in which climate risk information is already being used in adaptation assessments and evaluate the strengths and weaknesses of three groups of techniques. Next we identify knowledge gaps and opportunities for improving the production and uptake of climate risk information for the 2020s. We assert that climate change scenarios can meet some, but not all, of the needs of adaptation planning. Even then, the choice of scenario technique must be matched to the intended application, taking into account local constraints of time, resources, human capacity and supporting infrastructure. We also show that much greater attention should be given to improving and critiquing models used for climate impact assessment, as standard practice. Finally, we highlight the over-arching need for the scientific community to provide more information and guidance on adapting to the risks of climate variability and change over nearer time horizons (i.e. the 2020s). Although the focus of the review is on information provision and uptake in developing regions, it is clear that many developed countries are facing the same challenges. Copyright © 2009 Royal Meteorological Society
Resumo:
Income segregation across Melbourne’s residential communities is widening, and at a pace faster than in some other Australian cities. The widening gap between Melbourne’s rich and poor communities raises fears about concentrations of poverty and social exclusion, particularly if the geography of these communities is such that they and their residents are increasingly isolated from urban services and employment centres. Social exclusion in our metropolitan areas and the government responses to it are commonly thought to be the proper domain of social and economic policy. The role of urban planning is typically neglected, yet it helps shape the economic opportunities available to communities in its attempts to influence the geographical location of urban services, infrastructure and jobs. Under the current metropolitan strategy ‘Melbourne 2030’ urban services and transport infrastructure are to be concentrated within Principal Activity Centres spread throughout the metropolitan area and it is the intention that lower-income households should have ready access to these activity centres. However, the Victorian state government has few housing policy instruments to achieve this goal and there are fears that community mix may suffer as house prices and rents are bid up in the vicinity of Principal Activity Centres, and lower-income households are displaced. But are these fears justified by the changing geography of house prices in the metropolitan region? This is the key research question addressed in this paper which examines whether the Victorian practice of placing reliance on the market to deliver affordable housing, while intervening to promote a more compact pattern of urban settlement, is effective.
Resumo:
Hardcore, or long-term derelict and vacant brownfield sites which are often contaminated, form a significant proportion of brownfield land in many cities, not only in the UK but also in other countries. The recent economic recession has placed the economic viability of such sites in jeopardy. This paper compares the approaches for bringing back hardcore brownfield sites into use in England and Japan by focusing on ten case studies in Manchester and Osaka, using an `agency'-based frame- work. The findings are set in the context of (i) national brownfield and related policy agendas; (ii) recent trends in land and property markets in both England and Japan; and (iii) city-level comparisons of brownfields in Manchester and Osaka. The research, which was conducted during 2009 ^ 10, suggests that hardcore brownfield sites have been badly affected by the recent recession in both Manchester and Osaka. Despite this, not only is there evidence that hardcore sites have been successfully regenerated in both cities, but also that the critical success factors (CSFs) operating in bringing sites back into use share a large degree of commonality. These CSFs include the presence of strong potential markets, seeing the recession as an opportunity, long-term vision, strong branding, strong partnerships, integrated development, and getting infrastructure into place. Finally, the paper outlines the policy implications of the research.
Resumo:
Does infrastructure investment stimulate building supply? The case of the English regions, Regional Studies. Policies to improve infrastructure to stimulate regional growth remain common. This paper investigates whether increases in infrastructure investment in the English regions lead to subsequent rises in new commercial and residential property, using time-series modelling. Both physical (roads and harbours) and social infrastructure (education and health) impacts are investigated. Hardly any infrastructure effects with respect to commercial property investment were found, which raises doubts about whether extra infrastructure creates employment, though some impact was related to residential building. Overall, these results raise doubts about the supposed direct effects of infrastructure policies on regional jobs and growth.
Resumo:
Cities may be responsible for up to 70% of global carbon emissions and 75% of global energy consumption and by 2050 it is estimated that 70% of the world's population could live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city regions systemically to re-engineer their built environment and urban infrastructure in response to climate change and resource constraints. Re-Engineering the City 2020–2050: Urban Foresight and Transition Management (Retrofit 2050) is a major new interdisciplinary project funded under the Engineering and Physical Science Research Council's (EPSRC) Sustainable Urban Environments Programme which seeks to address this challenge. This briefing describes the background and conceptual framing of Retrofit 2050 project, its aims and objectives and research approach.
Resumo:
The increased use of technology is necessary in order for industrial control systems to maintain and monitor industrial, infrastructural, or environmental processes. The need to secure and identify threats to the system is equally critical. Securing Critical Infrastructures and Critical Control Systems: Approaches for Threat Protection provides a full and detailed understanding of the vulnerabilities and security threats that exist within an industrial control system. This collection of research defines and analyzes the technical, procedural, and managerial responses to securing these systems.
Resumo:
Cities are responsible for up to 70% of global carbon emissions and 75% of global energy consumption. By 2050 it is estimated that 70% of the world's population will live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city-regions (i.e. the city and its wider hinterland) to re-engineer systemically their built environment and urban infrastructure in response to climate change and resource constraints. To inform transitions to urban sustainability, key stakeholders' perceptions were sought though a participatory backcasting and scenario foresight process in order to illuminate challenging but realistic socio-technical scenarios for the systemic retrofit of core UK city-regions. The challenge of conceptualizing complex urban transitions is explored across multiple socio-technical ‘regimes’ (housing, non-domestic buildings, urban infrastructure), scales (building, neighbourhood, city-region), and domains (energy, water, use of resources) within a participatory process. The development of three archetypal ‘guiding visions’ of retrofit city-regional futures developed through this process are discussed, along with the contribution that such foresight processes might play in ‘opening up’ the governance and strategic navigation of urban sustainability.
Resumo:
Body area networks (BANs) are emerging as enabling technology for many human-centered application domains such as health-care, sport, fitness, wellness, ergonomics, emergency, safety, security, and sociality. A BAN, which basically consists of wireless wearable sensor nodes usually coordinated by a static or mobile device, is mainly exploited to monitor single assisted livings. Data generated by a BAN can be processed in real-time by the BAN coordinator and/or transmitted to a server-side for online/offline processing and long-term storing. A network of BANs worn by a community of people produces large amount of contextual data that require a scalable and efficient approach for elaboration and storage. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of body sensor data streams. In this paper, we motivate the introduction of Cloud-assisted BANs along with the main challenges that need to be addressed for their development and management. The current state-of-the-art is overviewed and framed according to the main requirements for effective Cloud-assisted BAN architectures. Finally, relevant open research issues in terms of efficiency, scalability, security, interoperability, prototyping, dynamic deployment and management, are discussed.