3 resultados para Scrofa
em CentAUR: Central Archive University of Reading - UK
Resumo:
The Proceedings of the Ninth Annual Conference of the British Association for Biological Anthropology and Osteoarchaeology (BABAO) held at the University of Reading in 2007. Contents: 1) A life course perspective of growing up in medieval London: evidence of sub-adult health from St Mary Spital (London) (Rebecca Redfern and Don Walker); 2) Preservation of non-adult long bones from an almshouse cemetery in the United States dating to the late nineteenth to the early twentieth centuries (Colleen Milligan, Jessica Zotcavage and Norman Sullivan); 3) Childhood oral health: dental palaeopathology of Kellis 2, Dakhleh, Egypt. A preliminary investigation (Stephanie Shukrum and JE Molto); 4) Skeletal manifestation of non-adult scurvy from early medieval Northumbria: the Black Gate cemetery, Newcastle-upon-Tyne (Diana Mahoney-Swales and Pia Nystrom); 5) Infantile cortical hyperostosis: cases, causes and contradictions (Mary Lewis and Rebecca Gowland); 6) Biological Anthropology Tuberculosis of the hip in the Victorian Britain (Benjamin Clarke and Piers Mitchell); 7) The re-analysis of Iron Age human skeletal material from Winnall Down (Justine Tracey); 8) Can we estimate post-mortem interval from an individual body part? A field study using sus scrofa (Branka Franicevec and Robert Pastor); 9) The expression of asymmetry in hand bones from the medieval cemetery at Écija, Spain (Lisa Cashmore and Sonia Zakrezewski); 10) Returning remains: a curator’s view (Quinton Carroll); 11) Authority and decision making over British human remains: issues and challenges (Piotr Bienkowski and Malcolm Chapman); 12) Ethical dimensions of reburial, retention and repatriation of archaeological human remains: a British perspective (Simon Mays and Martin Smith); 13) The problem of provenace: inaccuracies, changes and misconceptions (Margaret Clegg); 14) Native American human remains in UK collections: implications of NAGPRA to consultation, repatriation, and policy development (Myra J Giesen); 15) Repatriation – a view from the receiving end: New Zealand (Nancy Tayles).
Resumo:
Taphonomic studies regularly employ animal analogues for human decomposition due to ethical restrictions relating to the use of human tissue. However, the validity of using animal analogues in soil decomposition studies is still questioned. This study compared the decomposition of skeletal muscle tissues (SMTs) from human (Homo sapiens), pork (Sus scrofa), beef (Bos taurus), and lamb (Ovis aries) interred in soil microcosms. Fixed interval samples were collected from the SMT for microbial activity and mass tissue loss determination; samples were also taken from the underlying soil for pH, electrical conductivity, and nutrient (potassium, phosphate, ammonium, and nitrate) analysis. The overall patterns of nutrient fluxes and chemical changes in nonhuman SMT and the underlying soil followed that of human SMT. Ovine tissue was the most similar to human tissue in many of the measured parameters. Although no single analogue was a precise predictor of human decomposition in soil, all models offered close approximations in decomposition dynamics.
Resumo:
The study of decaying organisms and death assemblages is referred to as forensic taphonomy, or more simply the study of graves. This field is dominated by the fields of entomology, anthropology and archaeology. Forensic taphonomy also includes the study of the ecology and chemistry of the burial environment. Studies in forensic taphonomy often require the use of analogues for human cadavers or their component parts. These might include animal cadavers or skeletal muscle tissue. However, sufficient supplies of cadavers or analogues may require periodic freezing of test material prior to experimental inhumation in the soil. This study was carried out to ascertain the effect of freezing on skeletal muscle tissue prior to inhumation and decomposition in a soil environment under controlled laboratory conditions. Changes in soil chemistry were also measured. In order to test the impact of freezing, skeletal muscle tissue (Sus scrofa) was frozen (−20 °C) or refrigerated (4 °C). Portions of skeletal muscle tissue (∼1.5 g) were interred in microcosms (72 mm diameter × 120 mm height) containing sieved (2 mm) soil (sand) adjusted to 50% water holding capacity. The experiment had three treatments: control with no skeletal muscle tissue, microcosms containing frozen skeletal muscle tissue and those containing refrigerated tissue. The microcosms were destructively harvested at sequential periods of 2, 4, 6, 8, 12, 16, 23, 30 and 37 days after interment of skeletal muscle tissue. These harvests were replicated 6 times for each treatment. Microbial activity (carbon dioxide respiration) was monitored throughout the experiment. At harvest the skeletal muscle tissue was removed and the detritosphere soil was sampled for chemical analysis. Freezing was found to have no significant impact on decomposition or soil chemistry compared to unfrozen samples in the current study using skeletal muscle tissue. However, the interment of skeletal muscle tissue had a significant impact on the microbial activity (carbon dioxide respiration) and chemistry of the surrounding soil including: pH, electroconductivity, ammonium, nitrate, phosphate and potassium. This is the first laboratory controlled study to measure changes in inorganic chemistry in soil associated with the decomposition of skeletal muscle tissue in combination with microbial activity.