2 resultados para Schlüter
em CentAUR: Central Archive University of Reading - UK
Resumo:
Obstacles considerably influence boundary layer processes. Their influences have been included in mesoscale models (MeM) for a long time. Methods used to parameterise obstacle effects in a MeM are summarised in this paper using results of the mesoscale model METRAS as examples. Besides the parameterisation of obstacle influences it is also possible to use a joint modelling approach to describe obstacle induced and mesoscale changes. Three different methods may be used for joint modelling approaches: The first method is a time-slice approach, where steady basic state profiles are used in an obstacle resolving microscale model (MiM, example model MITRAS) and diurnal cycles are derived by joining steady-state MITRAS results. The second joint modelling approach is one-way nesting, where the MeM results are used to initialise the MiM and to drive the boundary values of the MiM dependent on time. The third joint modelling approach is to apply multi-scale models or two-way nesting approaches, which include feedbacks from the MiM to the MeM. The advantages and disadvantages of the different approaches and remaining problems with joint Reynolds-averaged Navier–Stokes modelling approaches are summarised in the paper.
Resumo:
BACKGROUND: Fibroblast growth factor 9 (FGF9) is secreted from bone marrow cells, which have been shown to improve systolic function after myocardial infarction (MI) in a clinical trial. FGF9 promotes cardiac vascularization during embryonic development but is only weakly expressed in the adult heart. METHODS AND RESULTS: We used a tetracycline-responsive binary transgene system based on the α-myosin heavy chain promoter to test whether conditional expression of FGF9 in the adult myocardium supports adaptation after MI. In sham-operated mice, transgenic FGF9 stimulated left ventricular hypertrophy with microvessel expansion and preserved systolic and diastolic function. After coronary artery ligation, transgenic FGF9 enhanced hypertrophy of the noninfarcted left ventricular myocardium with increased microvessel density, reduced interstitial fibrosis, attenuated fetal gene expression, and improved systolic function. Heart failure mortality after MI was markedly reduced by transgenic FGF9, whereas rupture rates were not affected. Adenoviral FGF9 gene transfer after MI similarly promoted left ventricular hypertrophy with improved systolic function and reduced heart failure mortality. Mechanistically, FGF9 stimulated proliferation and network formation of endothelial cells but induced no direct hypertrophic effects in neonatal or adult rat cardiomyocytes in vitro. FGF9-stimulated endothelial cell supernatants, however, induced cardiomyocyte hypertrophy via paracrine release of bone morphogenetic protein 6. In accord with this observation, expression of bone morphogenetic protein 6 and phosphorylation of its downstream targets SMAD1/5 were increased in the myocardium of FGF9 transgenic mice. CONCLUSIONS: Conditional expression of FGF9 promotes myocardial vascularization and hypertrophy with enhanced systolic function and reduced heart failure mortality after MI. These observations suggest a previously unrecognized therapeutic potential for FGF9 after MI.