66 resultados para Schiff base complex

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three heterometallic trinuclear Schiff base complexes, [{GuL(1)(H2O)}(2)Ni(CN)(4)]center dot 4H(2)O (1), [{CuL2(H2O)}(2)Ni(CN)(4)] (2), and [{CuL3(H2O)}(2)Ni(CN)(4)] (3) (HL1 = 7-amino-4-methyl-5-azahept-3-en-2-one, HL2 = 7-methylamino-4-methyl-5-azahept-3-en-2-one, and HL3 = 7-dimethylamino-4-methyl-5-azahept-3-en-2-one), were synthesized. All three complexes were characterized by elemental analysis, IR and UV spectroscopies, and thermal analysis. Two of them (1 and 3) were also characterized by single crystal X-ray crystallography. Complex 1 forms a hydrogen-bonded one-dimensional metal-organic framework that stabilizes a helical water chain into its cavity, but when any of the amine hydrogen atoms of the Schiff base are replaced by methyl groups, as in L 2 and L 3, the water chain, vanishes, showing explicitly the importance of the host-guest H-bonding interactions for the stabilization of a water cluster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A linear trinuclear Ni-Schiff base complex [Ni-3(salpen)(2)(PhCH2COO)(2)(EtOH)] has been synthesized by combining Ni(ClO4)(2)center dot 6H(2)O, phenyl acetic acid (C6H5CH2COOH), and the Schiff base ligand, N,N'-bis(salicylidene)-1,3-pentanediamine (H(2)salpen). This complex is self-assembled through hydrogen bonding and C-H-g interaction in the solid state to generate a sheet-like architecture, while in organic solvent (CH2Cl2), it forms vesicles with a mean diameter of 290 nm and fused vesicles, depending upon the concentration of the solution. These vesicles act as an excellent carrier of dye molecules in CH2Cl2. The morphology of the complex has been determined by scanning electron microscopy and transmission electron microscopy experiments, and the encapsulation of dye has been examined by confocal microscopic image and electronic absorption spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new linear trinuclear nickel(II) complex, [Ni-3(salme)(2)(OCn)(4)] (Hsalme = 2-[(3-methylamino-propylimino)-methyl]-phenol, OCn = cinnamate), showing weak ferromagnetic coupling (J = 1.8(1) cm(-1)) through phenoxo and a novel tridentate bridging mode (1 kappa(OO)-O-2':2 kappa O') of the cinnamate ligand has been synthesized and structurally characterized by X-ray crystallography. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two Schiff bases, HL1 and HL2 have been prepared by the condensation of N-methyl-1,3-propanediamine (mpn) with salicylaldehyde and 1-benzoylacetone (Hbn) respectively. HL1 on reaction with Cu(ClO4)(2)center dot 6H(2)O in methanol produced a trinuclear Cu-II complex, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O center dot 0.5CH(2)Cl(2) (1) but HL2 underwent hydrolysis under similar reaction conditions to result in a ternary Cu-II complex, [Cu(bn)(mpn)ClO4]. Both complexes have been characterised by single-crystal X-ray analyses, IR and UV-Vis spectroscopy and electrochemical studies. The partial cubane core [Cu3O4] of 1 consists of a central mu(3)-OH and three peripheral phenoxo bridges from the Schiff base. All three copper atoms of the trinuclear unit are five-coordinate with a distorted square-pyramidal geometry. The ternary complex 2 is mononuclear with the square-pyramidal Cu-II coordinated by a chelating bidentate diamine (mpn) and a benzoylacetonate (bn) moiety in the equatorial plane and one of the oxygen atoms of perchlorate in an axial position. The results show that the Schiff base (HL2) derived from 1-benzoylacetone is more prone to hydrolysis than that from salicylaldehyde (HL1). Magnetic measurements of 1 have been performed in the 1.8-300 K temperature range. The experimental data clearly indicate antiferromagnetism in the complex. The best-fit parameters for complex 1 are g = 2.18(1) and J = -15.4(2) cm(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tridentate Schiff base ligand, 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH), prepared by the mono-condensation of 1,2diaminoethane and acetylacetone, reacts with Cu(BF4)(2) center dot 6H(2)O to produce initially a dinuclear Cu(II) complex, [{Cu(AMAH)}(2) (mu-4,4'-bipyJ](BF4)(2) (1) which undergoes hydrolysis in the reaction mixture and finally produces a linear polymeric chain compound, [Cu(acac)(2)(mu-4,4'-bipy)](n) (2). The geometry around the copper atom in compound 1 is distorted square planar while that in compound 2 is essentially an elongated octahedron. On the other hand, the ligand HAMAH reacts with Cu(ClO4)(2) center dot 6H(2)O to yield a polymeric zigzag chain, [{Cu(acac)(CH3OH)(mu-4,4'-bipy)}(ClO4)](n) (3). The geometry of the copper atom in 3 is square pyramidal with the two bipyridine molecules in the cis equatorial positions. All three complexes have been characterized by elemental analysis, IR and UV-Vis spectroscopy and single crystal X-ray diffraction studies. A probable explanation for the different size and shape of the reported polynuclear complexes formed by copper(II) and 4,4'-bipyridine has been put forward by taking into account the denticity and crystal field strength of the blocking ligand as well as the Jahn-Teller effect in copper(II). (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Schiff base ligand, HL (2-[1-(3-methylamino-propylimino)-ethyl]-phenol), the 1:1 condensation product of 2-hydroxy acetophenone and N-methyl-1,3-diaminopropane, has been synthesized and characterized by X-ray crystallography as the perchlorate salt [H2L]ClO4 (1). The structure consists of discrete [H2L](+) cations and perchlorate anions. Two dinuclear Ni-II complexes, [Ni2L2(NO2)(2)] (2), [Ni2L2(NO3)(2)] (3) have been synthesized using this ligand and characterized by single crystal X-ray analyses. Complexes 2 and 3 are centrosymmetric dimers in which the Ni-II ions are in distorted fac- and mer-octahedral environments, respectively, bridged by two mu(2)-phenolate ions of deprotonated ligand, L. The plane of the phenyl rings and the Ni2O2 basal plane are nearly coplanar in 2 but almost perpendicular in 3. We have studied and explained this different behavior using high level DFT calculations (RI-BP86/def2-TZVP level of theory). The conformation observed in 3, which is energetically less favorable, is stabilized via intermolecular non-covalent interactions. Under the excitation of ultraviolet light, characteristic fluorescence of compound 1 was observed; by comparison fluorescence intensity decreases in case of compound 3 and completely quenched in compound 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel praseodymium(III) complex [Pr(NO3)3L] (1), where L=N,N′-bis[1-(pyridin-2-yl)ethylidene]ethane-1,2-diamine, has been obtained by direct reaction of the Schiff base and the metal salt; the gadolinium(III) homologue has also been prepared and so far characterized only spectroscopically. The crystal structure resembles those reported for hexadentate macrocyclic Schiff bases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mononuclear octahedral nickel(II) complex [Ni(HL(1))(2)](SCN)(2) (1) and an unusual penta-nuclear complex [{(NiL(2))(mu-SCN)}(4)Ni(NCS)(2)]center dot 2CH(3)CN (2) where HL(1) = 3-(2-aminoethylimino)butan-2-one oxime and HL(2) = 3-(hydroxyimino)butan-2-ylidene)amino)propylimino)butan-2-one oxime have been prepared and characterized by X-ray crystallography. The mono-condensed ligand, HL(1), was prepared by the 1:1 condensation of the 1,2-diaminoethane with diacetylmonoxime in methanol under high dilution. Complex 1 is found to be a mer isomer and the amine hydrogen atoms are involved in extensive hydrogen bonding with the thiocyanate anions. The dicondensed ligand, HL(2), was prepared by the 1:2 condensation of the 1,3-diaminopropane with diacetylmonoxime in methanol. The central nickel(II) in 2 is coordinated by six nitrogen atoms of six thiocyanate groups, four of which utilize their sulphur atoms to connect four NiL2 moieties to form a penta-nuclear complex and it is unique in the sense that this is the first thiocyanato bridged penta-nuclear nickel(II) compound with Schiff base ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dinuclear Ni-II complex, [Ni-2(L)(2)(H2O)(NCS)(2)]center dot 3H(2)O (1) in which the metal atoms are bridged by one water molecule and two mu(2)-phenolate ions, and a thiocyanato-bridged dimeric Cull complex, [Cu(L)NCS](2) (2) [L = tridentate Schiff-base ligand, N-(3-aminopropyl)salicylaldimine, derived from 1:1 condensation of salicylaldehyde and 1,3-diaminopropane], have been synthesized and characterized by IR and UV/Vis spectroscopy, cyclic voltammetry and single-crystal X-ray diffraction studies. The structure of 1 consists of dinuclear units with crystallographic C-2 symmetry in which each Ni-II atom is in a distorted octahedral environment. The Ni-O distance and the Ni-O-Ni angle, through the bridged water molecule, are 2.240(11) angstrom and 82.5(5)degrees, respectively. The structure of 2 consists of dinuclear units bridged asymmetrically by di-mu(1,3)-NCS ions; each Cull ion is in a square-pyramidal environment with tau = 0.25. Variable-temperature magnetic susceptibility studies indicate the presence of dominant ferromagnetic exchange coupling in complex 1 with J = 3.1 cm(-1), whereas complex 2 exhibits weak antiferromagnetic coupling between the Cu-II centers with J = -1.7 cm(-1). ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two sets of ligands, set-1 and set-2, have been prepared by mixing 1,3-diaminopentane and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively, and employed for the synthesis of complexes with Ni(II) perchlorate, Ni(II) thiocyanate and Ni(II) chloride. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)(2)(L = L-1 [N-3-(1-pyridin-2-yl-ethylidene)-pentane-1,3-diamine] for complex 1 or L-2[N-3-pyridin-2-ylmethylene-pentane-1,3-diamine] for complex 2) in which the Schiff bases are monocondensed terdentate, whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL(SCN)(2)] (L = L-3[N,N'-bis-(1-pyridin-2- yl-ethylidine)-pentane-1,3-diamine] for complex 3 or L-4 [N,N'-bis(pyridin-2-ylmethyline)-pentane-1,3- diamine] for complex 4) irrespective of the sets of ligands used. Complexes 5 {[NiL3(N-3)(2)]} and 6 {[NiL4(N-3)(2)]} are prepared by adding sodium azide to the methanol solution of complexes 1 and 2. Addition of Ni(II) chloride to the set-1 or set-2 ligands produces [Ni(pn)(2)]Cl-2, 7, as the major product, where pn = 1,3-diaminopentane. Formation of the complexes has been explained by the activation of the imine bond by the counter anion and thereby favouring the hydrolysis of the Schiff base. All the complexes have been characterized by elemental analyses and spectral data. Single crystal X-ray diffraction studies con. firm the structures of three representative members, 1, 4 and 7; all of them have distorted octahedral geometry around Ni(II). The bis-complex of terdentate ligands, 1, is the mer isomer, and complexes 4 and 7 possess trans geometry. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new mononuclear Cu(II) complex, [CuL(ClO4)(2)] (1) has been derived from symmetrical tetradentate di-Schiff base, N,N'-bis-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L) and characterized by X-ray crystallography. The copper atom assumes a tetragonally distorted octahedral geometry with two perchlorate oxygens coordinated very weakly in the axial positions. Reactions of I with sodium azide, ammonium thiocyanate or sodium nitrite solution yielded compounds [CuL(N-3)]ClO4 (2), [CuL(SCN)ClO4 (3) or [CuL(NO2)]-ClO4 (4), respectively, all of which have been characterized by X-ray analysis. The geometries of the penta-coordinated copper(H) in complexes 2-4 are intermediate between square pyramid and trigonal bipyramid (tbp) having the Addition parameters (tau) 0.47, 0.45 and 0.58, respectively. In complex 4, the nitrite ion is coordinated as a chelating ligand and essentially both the 0 atoms of the nitrite occupy one axial site. Complex 1 shows distinct preference for the anion in the order SCN- > N-3(-) > NO2- in forming the complexes 24 when treated with a SCN-/N-3(-)/NO2- mixture. Electrochemical electron transfer study reveals (CuCuI)-Cu-II reduction in acetonitrile solution. (c) 2006 Elsevier B.V.. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two sets of Schiff base ligands, set-1 and set-2 have been prepared by mixing the respective diamine (1,2-propanediamine or 1,3-propanediamine) and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively and employed for the synthesis of complexes with Ni(II) perchlorate and Ni(II) thiocyanate. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)(2) (L = L-1 [N-1-(1-pyridin-2-yl-ethylidine)-propane-1,3-diamine] for complex 1, L-2 [N-1-pyridine-2-ylmethylene-propane1,3-diamine] for complex 2 or L-3 [N-1-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 3) in which the Schiff bases are mono-condensed terdentate whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL](SCN)(2) (L=L-4 [N,N'-bis-(1-pyridine-2-yl-ethylidine)-propane-1,3-diamine] for complex 4, L-5 [NN'-bis(pyridine-2-ylmethyline)-propane-1, 3-diamine] for complex 5 or L-6 [NN'-bis-(1-pyridine-2-yl-ethylidine)-propane- 1, 2-diamine] for complex 6) irrespective of the sets of ligands used. Formation of the complexes has been explained by anion modulation of cation templating effect. All the complexes have been characterized by elemental analyses, spectral and electrochemical results. Single crystal X-ray diffraction studies confirm the structures of four representative members, 1, 3, 4 and 5; all of them have distorted octahedral geometry around Ni(II). The bis-complexes of terdentate ligands, I and 3 are the mer isomers and the complexes of tetradentate ligands, 4 and 5 possess trans geometry. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new copper(II) complexes, [((CuLN3)-N-1)(2)](ClO4)(2) (1), [(CuL2 N-3)(2)](ClO4)(2) (2), [CuL3(N-3)ClO4)](n) (3) and [CuL4(mu-1,1-N-3)(mu-1,3-N-3)(ClO4)](n) (4) where L-1 = N-1-pyridin-2-yl-methylene-propane-1,3-diamine, L-2 = N-1-(1-pyridin-2-yl-ethylidene)propane-1,3-diamine, L-3 =N-1-(1-pyridin-2-yl-ethylidene)ethane-1,2-diamine and L-4=N-1-(1-pyridin-2-yl-ethylidene)propane-1,2-diamine are four tridentate N,N,N donor Schiff base ligands, have been derived and structurally characterized by X-ray crystallography. Compounds 1 and 2 consist of double basal-apical end-on (EO) azide bridged dinuclear Cu-II complexes with square-pyramidal geometry. In complex 3 the square planar mononuclear [CuL3 (N-3)] units are linked by weakly coordinated perchlorate ions in the axial positions of Cu-II to form a one-dimensional chain. Two such chains are connected by hydrogen bonds involving perchlorate ions and azide groups. Compound 4 consists of 1-D chains in which the Cu-II ions with a square-pyramidal geometry are alternately bridged by single EO and end-to-end (EE) azido ligands, both adopting a basal-apical disposition. Variable temperature (300-2 K) magnetic susceptibility measurements and magnetization measurements at 2 K have been performed. The results reveal that complexes 1 and 2 are antiferromagnetically coupled through azido bridges (J= -12.18 +/- 0.09 and -4.43 +/- 0.1 cm(-1) for 1 and 2, respectively). Complex 3 shows two different magnetic interactions through the two kinds of hydrogen bonds; one is antiferromagnetic (J(1) = - 9.69 +/- 0.03 cm(-1)) and the other is ferromagnetic (J(2) = 1.00 +/- 0.01 cm(-1)). From a magnetic point of view complex 4 is a ferromagnetic dinuclear complex (J= 1.91 +/- 0.01 cm(-1)) coupled through the EO bridge only. The coupling through the EE bridge is practically nil as the N(azido)-Cu-II (axial) distance (2.643 angstrom) is too long. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three di-Schiff-base ligands, N,N'-bis(salicylidene)-1,3-propanediamine (H(2)Salpn), N,N'-bis(salicylidene)-1,3-pentanedianiine (H(2)Salpen) and N,N'-bis(salicylidine)-ethylenediamine (H(2)Salen) react with Ni(SCN)(2). 4H(2)O in 2:3 molar ratios to form the complexes; mononuclear [Ni(HSalpn)(NCS)(H2O)]center dot H2O (1a), trinuclear [{Ni(Salpen)}(2)Ni(NCS)(2)] (2b) and trinuclear [{Ni(Salen)}(2)Ni(NCS)(2)] (3) respectively. All the complexes have been characterized by elemental analyses, IR and UV-VIS spectra, and room temperature magnetic susceptibility measurements. The structures of la and 2b have been confirmed by X-ray single crystal analysis. In complex la, the Ni(II) atom is coordinated equatorially by the tetradentate, mononegative Schiff-base, HSalpn. Axial coordination of isothiocyanate group and a water molecule completes its octahedral geometry. The hydrogen atom attached to one of the oxygen atoms of the Schiff base is involved in a very strong hydrogen bond with a neighboring unit to form a centrosymmetric dimer. In 2b, two square planar [Ni(Salpen)] units act as bide mate oxygen donor ligands to a central Ni(II) which is also coordinated by two mutually cis N-bonded thiocyanate ligands to complete its distorted octahedral geometry. Complex 3 possesses a similar structure to that of 2b. A dehydrated form of la and a hydrated form of 2b have been obtained and characterized. The importance of electronic and steric factors in the variation of the structures is discussed. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three copper(II) complexes, [CuL1], [CuL2] and [CuL3] where L-1, L-2 and L-3 are the tetradentate di-Schiff-base ligands prepared by the condensation of acetylacetone and appropriate diamines (e.g. 1,2-diaminoethane, 1,2-diaminopropane and 1,3-diaminopropane, respectively) in 2:1 ratios, have been prepared. These complexes act as host molecules and include a guest sodium ion by coordinating through the oxygen atoms to result in corresponding new trinuclear complexes, [(CuL1)(2)Na(ClO4)(H2O)][CuL1], [(CuL2)(2)Na(ClO4)(H2O)] (2) and [(CuL3)(2)Na(ClO4)(H2O)] (3) when crystallized from methanol solution containing sodium perchlorate. All three complexes have been characterized by single crystal X-ray crystallography. In all the complexes, the sodium cation has a six-coordinate distorted octahedral environment being bonded to four oxygen atoms from two Schiff-base complexes of Cu(II) in addition to a perchlorate anion and a water molecule. The copper atoms are four coordinate in a square planar environment being bonded to two oxygen atoms and two nitrogen atoms of the Schiff-base ligand. The variable temperature susceptibilities for complexes 1-3 were measured over the range 2-300 K. The isotropic Hamiltonian, H = g(1)beta HS1 + g(2)beta HS2 + J(12)S(1)S(2) + g(3)beta HS3 for complex 1 and H = g(1)beta HS1 + g2 beta HS2 +J(12)S(1)S(2) for complexes 2 and 3 has been used to interpret the magnetic data. The best fit parameters obtained are: g(1) = g(2) = 2.07(0), J = - 1.09(1) cm(-1) for complex 1, g(1) = g(2) = 2.06(0), J = -0.55(1) cm(-1) for complex 2 and g1 = g2 = 2.07(0).J = -0.80(1) cm(-1) for 3. Electrochemical studies displayed an irreversible Cu(II)/Cu(I) one-electron reduction process. (C) 2008 Elsevier Ltd. All rights reserved.