7 resultados para Scanning tunnelling microscopy

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface properties of gluten proteins were measured in a dilation test and in compression and expansion tests. The results showed that monomeric gliadin was highly surface active, but polymer glutenin had almost no surface activity. The locations of those proteins in bread dough were investigated using confocal scanning laser microscopy and compared with polar and nonpolar lipids. Added gluten proteins participated in the formation of the film or the matrix, surrounding and separating individual gas cells in bread dough. Gliadin was found in the bulk of dough and gas 'cell walls'. Glutenin was found only in the bulk dough. Polar lipids were present in the protein matrix and in gas 'cell walls', as well as at the surface of some particles, which appeared to be starch granules. However, nonpolar lipid mainly occur-red on the surface of particles, which may be starch granules and small lipid droplets. It is suggested that the locations of gluten proteins in bread dough depends on their surface properties. Polar lipid participates the formation of gluten protein matrix and gas 'cell walls'. Nonpolar lipids may have an effect on the rheological properties by associating with starch granule surfaces and may form lipid droplets. (C) 2004 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of caseins and whey proteins into acid gels produced from unheated and heat treated skimmed milk was studied by confocal scanning laser microscopy (CSLM) using fluorescent labelled proteins. Bovine casein micelles were labelled using Alexa Fluor 594, while whey proteins were labelled using Alexa Fluor 488. Samples of the labelled protein solutions were introduced into aliquots of pasteurised skim milk, and skim milk heated to 90 degrees C for 2 min and 95 degrees C for 8 min. The milk was acidified at 40 degrees C to a final pH of 4.4 using 20 g gluconodelta-lactone/l (GDL). The formation of gels was observed with CSLM at two wavelengths (488 nm and 594 nm), and also by visual and rheological methods. In the control milk, as pH decreased distinct casein aggregates appeared, and as further pH reduction occurred, the whey proteins could be seen to coat the casein aggregates. With the heated milks, the gel structure was formed of continuous strands consisting of both casein and whey protein. The formation of the gel network was correlated with an increase in the elastic modulus for all three treatments, in relation to the severity of heat treatment. This model system allows the separate observation of the caseins and whey proteins, and the study of the interactions between the two protein fractions during the formation of the acid gel structure, on a real-time basis. The system could therefore be a valuable tool in the study of structure formation in yoghurt and other dairy protein systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the (001) surface structure of lithium titanate (Li2TiO3) using auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and scanning tunneling microscopy (STM). Li2TiO3 is a potential fusion reactor blanket material. After annealing at 1200 K, LEED demonstrated that the Li2TiO3(001) surface was well ordered and not reconstructed. STM imaging showed that terraces are separated in height by about 0.3 nm suggesting a single termination layer. Moreover, hexagonal patterns with a periodicity of ∼0.4 nm are observed. On the basis of molecular dynamics (MD) simulations, these are interpreted as a dynamic arrangement of Li atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we describe results which teach us much about the mechanism of the reduction and oxidation of TiO2(110) by the application of scanning tunnelling microscopy imaging at high temperatures. Titania reduces at high temperature by thermal oxygen loss to leave localized (i.e. Ti3+) and delocalized electrons on the lattice Ti, and a reduced titania interstitial that diffuses into the bulk of the crystal. The interstitial titania can be recalled to the surface by treatment in very low pressures of oxygen, occurring at a significant rate even at 573 K. This re-oxidation occurs by re-growth of titania layers in a Volmer-Weber manner, by a repeating sequence in which in-growth of extra titania within the cross-linked (1 x 2) structure completes the (1 x 1) bulk termination. The next layer then initiates with the nucleation of points and strings which extend to form islands of cross-linked (1 x 2), which once again grow and fill in to reform the (1 x 1). This process continues in a cyclical manner to form many new layers of well-ordered titania. The details of the mechanism and kinetics of the process are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The renewed interest in magnetite (Fe3O4) as a major phase in different types of catalysts has led us to study the oxidation–reduction behaviour of its most prominent surfaces. We have employed computer modelling techniques based on the density functional theory to calculate the geometries and surface free energies of a number of surfaces at different compositions, including the stoichiometric plane, and those with a deficiency or excess of oxygen atoms. The most stable surfaces are the (001) and (111), leading to a cubic Fe3O4 crystal morphology with truncated corners under equilibrium conditions. The scanning tunnelling microscopy images of the different terminations of the (001) and (111) stoichiometric surfaces were calculated and compared with previous reports. Under reducing conditions, the creation of oxygen vacancies in the surface leads to the formation of reduced Fe species in the surface in the vicinity of the vacant oxygen. The (001) surface is slightly more prone to reduction than the (111), due to the higher stabilisation upon relaxation of the atoms around the oxygen vacancy, but molecular oxygen adsorbs preferentially at the (111) surface. In both oxidized surfaces, the oxygen atoms are located on bridge positions between two surface iron atoms, from which they attract electron density. The oxidised state is thermodynamically favourable with respect to the stoichiometric surfaces under ambient conditions, although not under the conditions when bulk Fe3O4 is thermodynamically stable with respect to Fe2O3. This finding is important in the interpretation of the catalytic properties of Fe3O4 due to the presence of oxidised species under experimental conditions.