4 resultados para Scaffold, Calcium silicate, Bone regeneration, Mechanical strength
em CentAUR: Central Archive University of Reading - UK
Resumo:
Osteogenic differentiation of various adult stem cell populations such as neural crest-derived stem cells is of great interest in the context of bone regeneration. Ideally, exogenous differentiation should mimic an endogenous differentiation process, which is partly mediated by topological cues. To elucidate the osteoinductive potential of porous substrates with different pore diameters (30 nm, 100 nm), human neural crest-derived stem cells isolated from the inferior nasal turbinate were cultivated on the surface of nanoporous titanium covered membranes without additional chemical or biological osteoinductive cues. As controls, flat titanium without any topological features and osteogenic medium was used. Cultivation of human neural crest-derived stem cells on 30 nm pores resulted in osteogenic differentiation as demonstrated by alkaline phosphatase activity after seven days as well as by calcium deposition after 3 weeks of cultivation. In contrast, cultivation on flat titanium and on membranes equipped with 100 nm pores was not sufficient to induce osteogenic differentiation. Moreover, we demonstrate an increase of osteogenic transcripts including Osterix, Osteocalcin and up-regulation of Integrin β1 and α2 in the 30 nm pore approach only. Thus, transplantation of stem cells pre-cultivated on nanostructured implants might improve the clinical outcome by support of the graft adherence and acceleration of the regeneration process.
Resumo:
1. The evolution of host resistance to parasitoid attack will be constrained by two factors: the costs of the ability to defend against attack, and the costs of surviving actual attack. These factors have been investigated using Drosophila melanogaster and its parasitoids as a model system. The costs of defensive ability are expressed as a trade-off with larval competitive ability, whereas the costs of actual defence are exhibited in terms of reduced adult fecundity and size. 2. The costs of actual defence may be ameliorated by the host-choice decisions made by Pachycrepoideus vindemiae, a pupal parasitoid. If larvae that have successfully encapsulated a parasitoid develop into poorer quality hosts, then these may be rejected by ovipositing pupal parasitoids. 3. Pupae developing from larvae that have encapsulated the parasitoid Asobara tabida are smaller and have relatively thinner puparia. Thinner puparia are likely to be associated with a reduction in mechanical strength and possibly with a decrease in desiccation tolerance. 4. Pachycrepoideus vindemiae that develop in capsule-bearing pupae are smaller than those that emerge from previously unattacked hosts. This supports the prediction that ovipositing female P. vindemiae should avoid attacking capsule-bearing hosts. However, in choice experiments with 1-day-old pupae, P. vindemiae females oviposited preferentially in hosts containing a capsule, whereas there was no preference found with 4-day-old hosts. This appears to be a maladaptive host choice decision, as the female pupal parasitoids are preferentially attacking hosts that will result in a reduction of their own fitness. 5. The increased likelihood of attack by a pupal parasitoid is another cost of actual defence against larval parasitoid attack.
Resumo:
New ampholyte biomaterial compounds containing ampholyte moieties are synthesized and integrated into polymeric assemblies to provide hydrophilic polymers exhibiting improved biocompatibility, haemocompatibility, hydrophilicity non-thrombogenicity, anti-bacterial ability, and mechanical strength, as well as suitability as a drug delivery platform.
Resumo:
Proton exchange membranes (PEM’s) are currently under investigation for membrane water electrolysis (PEMWE) to deliver efficient production of the high purity hydrogen needed to supply emerging clean-energy technologies such as hydrogen fuel cells. The microblock aromatic ionomer described in this work achieves high mechanical strength in an aqueous environment as a result of its designed, biphasic morphology and displays many of the qualities required in a PEM. The new ionomer membrane thus shows good proton conductivity (63 mS cm−1 at 80 °C and 100% RH), while retaining mechanical integrity under high temperature, hydrated conditions. Testing in electrolysis has shown good energy efficiency (1.67 V at 1 A cm−2 and 80 °C, corresponding to 4 kWh/Nm3 of H2), making this ionomer a potential candidate for commercial application in PEMWE.