106 resultados para Sandy Kapoor

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulses of potassium (K+) applied to columns of repacked calcium (Ca2+) saturated soil were leached with distilled water or calcium chloride (CaCl2) solutions of various concentrations at a rate of 12 mm h(-1). With increased Ca2+ concentration, the rate of movement of K+ increased, as did the concentration of K+ in the displaced pulse, which was less dispersed. The movement of K+ in calcite-amended soil leached with water was at a similar rate to that of the untreated soil leached with 1 mM CaCl2, and in soil containing gypsum, movement was similar to that leached with 15 mM CaCl2. The Ca2+ concentrations in the leachates were about 0.4 and 15 mM respectively the expected values for the dissolution of the two amendments. Soil containing native K+ was leached with distilled water or CaCl2 solutions. The amount of K+ leached increased as Ca2+ concentration increased, with up to 34% of the exchangeable K+ being removed in five pore volumes of 15 mM CaCl2. Soil amended with calcite and leached with water lost K+ at a rate between that for leaching the unamended soil with 1 mM CaCl2 and that with water. Soil containing gypsum and leached with water lost K+ at a similar rate to unamended soil leached with 15 mM CaCl2. The presence of Ca2+ in irrigation water and of soil minerals able to release Ca2+ are of importance in determining the amounts of K+ leached from soils. The LEACHM model predicted approximately the displacement of K+, and was more accurate with higher concentrations of displacing solution. The shortcomings of this model are its inability to account for rate-controlled processes and the assumption that K+:Ca2+ exchange during leaching can be described using a constant adsorption coefficient. As a result, the pulse is predicted to appear a little earlier and the following edge has less of a tail than chat measured. In practical agriculture, the model will be more useful in soils containing gypsum or leached with saline water than in either calcareous or non-calcareous soils leached with rainwater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titration curves were determined for soil from horizon samples of a clayey and a sandy loam Oxisol by (a) adding NaOH to soil suspensions and (b) incubating moist soils with Ca(OH)(2). The organic fraction was primarily responsible for buffering in both soils. Humic acids were more important than fulvic acids in buffering against NaOH additions. With Ca(OH)(2), greater buffer capacities were found due to carboxyl sites, primarily on fulvic acids, becoming complexed with Ca2+ so that in the clay soil humic and fulvic acids were equally important as buffering components while fulvic acids were more important in the sandy loam soil. The buffer capacity of organic matter against Ca(OH)(2) additions was 1.1 mol(c) kg(-1) pH(-1). In the incubated soils, exchangeable cations were also determined and changes in the amounts of exchangeable and non-exchangeable Ca2+ acidity and effective cation exchange capacity were calculated. Up to half the added Ca2+ became complexed and was nonexchangeable. Aluminum complexed by organic matter appears to be an important buffering component, together with non exchangeable H+. With the increase of pH the dissociated sites from the carboxyl groups could complex Ca2+. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laboratory experiment was conducted to determine the effect of temperature (2, 12, 22 °C) on the rate of aerobic decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil incubated for a period of 42 days. Measurements of decomposition processes included skeletal muscle tissue mass loss, carbon dioxide (CO2) evolution, microbial biomass, soil pH, skeletal muscle tissue carbon (C) and nitrogen (N) content and the calculation of metabolic quotient (qCO2). Incubation temperature and skeletal muscle tissue quality had a significant effect on all of the measured process rates with 2 °C usually much lower than 12 and 22 °C. Cumulative CO2 evolution at 2, 12 and 22 °C equaled 252, 619 and 905 mg CO2, respectively. A significant correlation (P<0.001) was detected between cumulative CO2 evolution and tissue mass loss at all temperatures. Q10s for mass loss and CO2 evolution, which ranged from 1.19 to 3.95, were higher for the lower temperature range (Q10(2– 12 °C)>Q10(12–22 °C)) in the Ovis samples and lower for the low temperature range (Q10(2–12 °C)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The uptake of arsenic (As) by plants from contaminated soils presents a health hazard that may affect the use of agricultural and former industrial land. Methods for limiting the hazard are desirable. A proposed remediation treatment comprises the precipitation of iron (Fe) oxides in the contaminated soil by adding ferrous sulfate and lime. The effects on As bioavailability were assessed using a range of vegetable crops grown in the field. Four UK locations were used, where soil was contaminated by As from different sources. At the most contaminated site, a clay loam containing a mean of 748 mg As kg(-1) soil, beetroot, calabrese, cauliflower, lettuce, potato, radish and spinach were grown. For all crops except spinach, ferrous sulfate treatment caused a significant reduction in the bioavailability of As in some part of the crop. Application of ferrous sulfate in solution, providing 0.2% Fe oxides in the soil (0-10 cm), reduced As uptake by a mean of 22%. Solid ferrous sulfate was applied to give concentrations of 0.5% and 1% Fe oxides: the 0.5% concentration reduced As uptake by a mean of 32% and the 1% concentration gave no significant additional benefit. On a sandy loam containing 65 mg As kg(-1) soil, there was tentative evidence that ferrous sulfate treatment up to 2% Fe oxides caused a significant reduction in lettuce As, but calabrese did not respond. At the other two sites, the effects of ferrous sulfate treatment were not significant, but the uptake of soil As was low in treated and untreated soils. Differences between sites in the bioavailable fraction of soil As may be related to the soil texture or the source of As. The highest bioavailability was found on the soil which had been contaminated by aerial deposition and had a high sand content. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three gypsiferous-calcareous soils from the Al-Hassa Oasis in Saudi Arabia were examined to determine the conditions under which dissolution of gypsum could be hindered by the formation of coatings of calcite during leaching. Batch extraction with water of a sandy clay loam, a sandy clay and a sandy loam containing 40, 26 and 5% gypsum and 14, 12 and 13% calcite respectively was followed by chemical analysis of the extracts, SEM examination and XRD and EDX microprobe analysis. Extraction in closed centrifuge tubes for I h or 5 h showed that initially gypsum dissolved to give solutions near to equilibrium but then in the sandy clay loam, between one quarter and one third of the gypsum could not dissolve. In the sandy clay about one fifth of the gypsum could not dissolve with none remaining in the sandy loam. All the extracts were close to equilibrium with calcite. SEM and EDX examination showed that coatings of calcite had formed on the gypsum particles. The sandy clay loam was also extracted using an open system in which either air or air +1% CO2 was bubbled through the suspensions for 1 h with stirring. The gypsum dissolved more rapidly and all of the gypsum dissolved. Thus, where the rate of dissolution of gypsum was rapid, calcite did not manage to cover the gypsum surfaces probably because the surface was being continuously removed. Slower leaching conditions in the field are likely to be conducive to the formation of coatings and less dissolution of gypsum. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A soil (sandy loam) column leaching study aimed to determine the extent of mobility and co-mobility of Cu, Ni, Zn and dissolved organic matter (DOM) released from a surface-application (equivalent to 50 t ds ha(-1)) of anaerobically-digested sewage sludge. Leaching of DOM through It the soil column was found to be almost un-retarded. Decidedly similar behaviour was exhibited by Ni suggesting that it migrated as organic complexes. Whilst Cu was also found to be leached, significant retardation was evident. However, the importance of DOM in promoting the mobility of both Cu and Ni was evidenced by their lack of mobility when added to the soil column as inorganic forms. The presence of DOM did not prevent Zn from becoming completely adsorbed by the soil solid phase. In relation to WHO drinking water guidelines, only Ni concentrations showed potential environmental significance. due to the relatively poor retention of Ni by the sludge solid phase. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complexation of Cu by sewage sludge-derived dissolved organic matter (SSDOM) is a process by which the environmental significance of the element may become enhanced due to reduced soil sorption and, hence, increased mobility. The work described in this paper used an ion selective electrode procedure to show that SSDOM complexation of Cu was greatest at intermediate pH values because competition between hydrogen ions and Cu for SSDOM binding sites, and between hydroxyl ions and SSDOM as Cu ligands, was lowest at such values. Batch sorption experiments further showed that the process of Cu complexation by SSDOM provided an explanation for enhanced desorption of Cu from the solid phase of a contaminated, organic matter-rich, clay loam soil, and reduced adsorption of Cu onto the solid phase of a sandy loam soil. Complexation of Cu by SSDOM did not affect uptake of Cu by spring barley plants, when compared to free ionic Cu, in a sand-culture pot experiment. However, it did appear to lead to greater biomass yields of the plant; perhaps indicating that the Cu-SSDOM complex had a lower toxicity towards the plant than the free Cu ion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technology for site-specific applications of nitrogen (N) fertilizer has exposed a gap in our knowledge about the spatial variation of soil mineral N, and that which will become available during the growing season within arable fields. Spring mineral N and potentially available N were measured in an arable field together with gravimetric water content, loss on ignition, crop yield, percentages of sand, silt, and clay, and elevation to describe their spatial variation geostatistically. The areas with a larger clay content had larger values of mineral N, potentially available N, loss on ignition and gravimetric water content, and the converse was true for the areas with more sandy soil. The results suggest that the spatial relations between mineral N and loss on ignition, gravimetric water content, soil texture, elevation and crop yield, and between potentially available N and loss on ignition and silt content could be used to indicate their spatial patterns. Variable-rate nitrogen fertilizer application would be feasible in this field because of the spatial structure and the magnitude of variation of mineral N and potentially available N.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to examine interrelationships between functional biochemical and microbial indicators of soil quality, and their suitability to differentiate areas under contrasting agricultural management regimes. The study included five 0.8 ha areas on a sandy-loam soil which had received contrasting fertility and cropping regimes over a 5 year period. These were organically managed vegetable, vegetable -cereal and arable rotations, an organically managed grass clover ley, and a conventional cereal rotation. The organic areas had been converted from conventional cereal production 5 years prior to the start of the study. All of the biochemical analyses, including light fraction organic matter (LFOM) C and N, labile organic N (LON), dissolved organic N and water-soluble carbohydrates showed significant differences between the areas, although the nature of the relationships between the areas varied between the different parameters, and were not related to differences in total soil organic matter content. The clearest differences were seen in LFOM C and N and LON, which were higher in the organic arable area relative to the other areas. In the case of the biological parameters, there were differences between the areas for biomass-N, ATP, chitin content, and the ratios of ATP: biomass and basal respiration: biomass. For these parameters, the precise relationships between the areas varied. However, relative to the conventionally managed area, areas under organic management generally had lower biomass-N and higher ATP contents. Arbuscular mycorrhizal fungus colonization potential was extremely low in the conventional area relative to the organic areas. Further, metabolic diversity and microbial community level physiological profiles, determined by analysis of microbial community metabolism using Biolog GN plates and the activities of eight key nutrient cycling enzymes, grouped the organic areas together, but separated them from the conventional area. We conclude that microbial parameters are more effective and consistent indicators of management induced changes to soil quality than biochemical parameters, and that a variety of biochemical and microbial analyses should be used when considering the impact of management on soil quality. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to gain understanding of the movement of pollutant metals in soil. the chemical mechanisms involved in the transport of zinc were studied. The displacement of zinc through mixtures of sand and cation exchange resin was measured to validate the methods used for soil. With cation exchange capacities of 2.5 and 5.0 cmol(c) kg(-1). 5.6 and 8.4 pore volumes of 10 mM CaCl2, respectively, were required to displace a pulse of ZnCl2. A simple Burns-type model (Wineglass) using an adsorption coefficient (K-d) determined by fitting a straight line relationship to an adsorption isotherm gave a good fit to the data (K-d=0.73 and 1.29 ml g(-1), respectively). Surface and subsurface samples of an acidic sandy loam (organic matter 4.7 and 1.0%. cation exchange capacity (CEC) 11.8 and 6.1 cmol(c) kg(-1) respectively) were leached with 10 mM calcium chloride. nitrate and perchlorate. With chloride. the zinc pulse was displaced after 25 and 5 pore volumes, respectively. The Kd values were 6.1 and 2.0 ml g(-1). but are based on linear relationships fitted to isotherms which are both curved and show hysteresis. Thus. a simple model has limited value although it does give a general indication of rate of displacement. Leaching with chloride and perchlorate gave similar displacement and Kd values, but slower movement occurred with nitrate in both soil samples (35 and 7 pore volumes, respectively) which reflected higher Kd values when the isotherms were measured using this anion (7.7 and 2.8 ml g(-1) respectively). Although pH values were a little hi-her with nitrate in the leachates, the differences were insufficient to suggest that this increased the CEC enough to cause the delay. No increases in pH occurred with nitrate in the isotherm experiments. Geochem was used to calculate the proportions of Zn complexed with the three anions and with fulvic acid determined from measurements of dissolved organic matter. In all cases, more than 91% of the Zn was present as Zn2+ and there were only minor differences between the anions. Thus, there is an unexplained factor associated with the greater adsorption of Zn in the presence of nitrate. Because as little as five pore volumes of solution displaced Zn through the subsurface soil, contamination of ground waters may be a hazard where Zn is entering a light-textured soil, particularly where soil salinity is increased. Reductions in organic matter content due to cultivation will increase the hazard. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transmissible spongiform encephalopathies (TSEs) are caused by infectious agents whose structures have not been fully characterized but include abnormal forms of the host protein PrP, designated PrPSc, which are deposited in infected tissues. The transmission routes of scrapie and chronic wasting disease (CWD) seem to include environmental spread in their epidemiology, yet the fate of TSE agents in the environment is poorly understood. There are concerns that, for example, buried carcasses may remain a potential reservoir of infectivity for many years. Experimental determination of the environmental fate requires methods for assessing binding/elution of TSE infectivity, or its surrogate marker PrPSc, to and from materials with which it might interact. We report a method using Sarkosyl for the extraction of murine PrPSc, and its application to soils containing recombinant ovine PrP (recPrP). Elution properties suggest that PrP binds strongly to one or more soil components. Elution from a clay soil also required proteinase K digestion, suggesting that in the clay soil binding occurs via the N-terminal of PrP to a component that is absent from the sandy soils tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The foraminiferal-rich pelagic Bateig Limestone forms several varieties of the important building stones quarried at Bateig Hill in southeastern Spain. Three principal ichnofabrics (Bichordites, mottled-Palaeophycus and mottled-Ophiomorpha) are recognized, which are present in at least two (possibly up to four) repeated successions (cycles). Each succession begins with an erosional event. The Bichordites ichnofabric represents a new type of facies, formed as thin turbidity/grain flow, stratiform units derived from sediment slips off a fault into deep water. Each slipped unit became almost completely bioturbated by infaunal echinoids, colonizing by lateral migration. Because of the thinness of the units, successive colonizations tended to truncate the underlying burrows giving rise to a pseudo-stratification. As the Bichordites ichnofabric accumulated on the fault apron, thus reducing the effective height of the fault scarp, the substrate gradually came under the influence of currents traversing the shelf. This led to a change in hydraulic regime, and to the mottled-Palaeophycus and mottled-Ophiomorpha ichnofabrics in sediment deposited under bed load transport, and associated with laminar and cross-stratified beds and local muddy intervals. Reactivation of the fault triggered erosion and channeling and a return to grain flow sedimentation, and to the Bichordites ichnofabric of the succeeding cycle. The highest unit of the Bateig Limestone is formed entirely of cross-stratified calcarenites with occasional Ophiomorpha (Ophiomorpha-primary lamination ichnofabric) and is similar to many shallow marine facies but they still bear a significant content of pelagic foraminifera. The sedimentary setting bears resemblance with that described for the Pleistocene Monte Torre Paleostrait and the modem Strait of Messina (Italy), where the narrow morphology of the depositional area enhanced tidal currents and allowed for high-energy sandy deposition in relatively deep areas. More data on the Miocene paleogeography of the Bateig area should provide further testing for this hypothesis. The ichnofacies and stacking of the Bateig Limestone differ from the classic Seilacherian model in that they reflect changes in hydraulic process and are associated with faulting and subsidence and changes in sediment supply. Recognition of the unusual ichnofabrics and their relationships provides a clear indication of the overall dynamic setting. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The active accretional features that have developed along the modern Nile Delta promontories during shoreline retreat are analysed using topographic maps, remote imagery, ground and hydrographic surveys, together providing 15 time-slice maps (1922-2000) at Rosetta and 14 time-slice maps (1909-2000) at Damietta. Small double sandy spits developed and persisted at Rosetta between 1986 and 1991. At Damietta, a much larger single spit, 9 km long, formed approximately east of the mouth of the Damietta Nile branch between 1955 and 1972, although its source has now been depleted. Both the Rosetta and Damietta inlets are associated with submerged mouth bars that accumulated prior to the damming of the Nile, but that continue to contribute to local sedimentation problems, particularly at Rosetta. The development of the active accretional features along the Nile promontories reflects a combination of factors including sediment availability, transport pathways from source areas, a decrease in the magnitude of Nile flood discharges, as well as the impact of protective structures at the river mouths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new genus Ibergirhynchia, a member of the rhynchonellide superfamily Dimerelloidea, is described for the species Terebratula contraria Roemer, 1850, from Early Carboniferous deposits of the Harz Mountains, Germany. Ibergirhynchia contraria is from a monospecific brachiopod limestone that formed on top of the drowned Devonian Iberg Reef which persisted as a seamount during Famennian and Early Carboniferous times. Ibergirhynchia contraria is considered a cold seep-related brachiopod based on this locality. Such seep associations have been observed for Mesozoic representatives of the rhynchonellide superfamily Dimerelloidea. Ibergirhynchia is considered the first Paleozoic representative of the family Rhynchonellinidae. Ibergirhynchia resembles Dzieduszyckia externally and may be derived from this dimerelloid.