88 resultados para Sample selection model

em CentAUR: Central Archive University of Reading - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In Sub-Saharan Africa (SSA) the technological advances of the Green Revolution (GR) have not been very successful. However, the efforts being made to re-introduce the revolution call for more socio-economic research into the adoption and the effects of the new technologies. The paper discusses an investigation on the effects of GR technology adoption on poverty among households in Ghana. Maximum likelihood estimation of a poverty model within the framework of Heckman's two stage method of correcting for sample selection was employed. Technology adoption was found to have positive effects in reducing poverty. Other factors that reduce poverty include education, credit, durable assets, living in the forest belt and in the south of the country. Technology adoption itself was also facilitated by education, credit, non-farm income and household labour supply as well as living in urban centres. Inarguably, technology adoption can be taken seriously by increasing the levels of complementary inputs such as credit, extension services and infrastructure. Above all, the fundamental problems of illiteracy, inequality and lack of effective markets must be addressed through increasing the levels of formal and non-formal education, equitable distribution of the 'national cake' and a more pragmatic management of the ongoing Structural Adjustment Programme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The management of information in engineering organisations is facing a particular challenge in the ever-increasing volume of information. It has been recognised that an effective methodology is required to evaluate information in order to avoid information overload and to retain the right information for reuse. By using, as a starting point, a number of the current tools and techniques which attempt to obtain ‘the value’ of information, it is proposed that an assessment or filter mechanism for information is needed to be developed. This paper addresses this issue firstly by briefly reviewing the information overload problem, the definition of value, and related research work on the value of information in various areas. Then a “characteristic” based framework of information evaluation is introduced using the key characteristics identified from related work as an example. A Bayesian Network diagram method is introduced to the framework to build the linkage between the characteristics and information value in order to quantitatively calculate the quality and value of information. The training and verification process for the model is then described using 60 real engineering documents as a sample. The model gives a reasonable accurate result and the differences between the model calculation and training judgements are summarised as the potential causes are discussed. Finally, several further issues including the challenge of the framework and the implementations of this evaluation assessment method are raised.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Bayesian method of estimating multivariate sample selection models is introduced and applied to the estimation of a demand system for food in the UK to account for censoring arising from infrequency of purchase. We show how it is possible to impose identifying restrictions on the sample selection equations and that, unlike a maximum likelihood framework, the imposition of adding up at both latent and observed levels is straightforward. Our results emphasise the role played by low incomes and socio-economic circumstances in leading to poor diets and also indicate that the presence of children in a household has a negative impact on dietary quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent issues of this Journal a debate has raged concerning the appropriate nature of academic research in the Asia Pacific region. While we support the desire for both rigor and regional relevance in this research, we wish to demonstrate a strong commonality between the performance of large Asian firms and others from Europe and North America. This prompts us to question the need for a new theory of the MNE based on the experience of Asian firms. Like their counterparts elsewhere, the large Asian firms mostly operate on an intra-regional basis. While in the literature it has been assumed that the path to success for Asian firms is globalization, we show that the data supporting this is confined to a handful of unrepresentative case studies. We also present a bibliometric analysis which shows an overwhelming case study sample selection bias in academic studies towards this small number of unrepresentative cases

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Providing homeowners with real-time feedback on their electricity consumption through a dedicated display device has been shown to reduce consumption by approximately 6-10%. However, recent advances in smart grid technology have enabled larger sample sizes and more representative sample selection and recruitment methods for display trials. By analyzing these factors using data from current studies, this paper argues that a realistic, large-scale conservation effect from feedback is in the range of 3-5%. Subsequent analysis shows that providing real-time feedback may not be a cost effective strategy for reducing carbon emissions in Australia, but that it may enable additional benefits such as customer retention and peak-load shift.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose – Price indices for commercial real estate markets are difficult to construct because assets are heterogeneous, they are spatially dispersed and they are infrequently traded. Appraisal-based indices are one response to these problems, but may understate volatility or fail to capture turning points in a timely manner. This paper estimates “transaction linked indices” for major European markets to see whether these offer a different perspective on market performance. The paper aims to discuss these issues. Design/methodology/approach – The assessed value method is used to construct the indices. This has been recently applied to commercial real estate datasets in the USA and UK. The underlying data comprise appraisals and sale prices for assets monitored by Investment Property Databank (IPD). The indices are compared to appraisal-based series for the countries concerned for Q4 2001 to Q4 2012. Findings – Transaction linked indices show stronger growth and sharper declines over the course of the cycle, but they do not notably lead their appraisal-based counterparts. They are typically two to four times more volatile. Research limitations/implications – Only country-level indicators can be constructed in many cases owing to low trading volumes in the period studied, and this same issue prevented sample selection bias from being analysed in depth. Originality/value – Discussion of the utility of transaction-based price indicators is extended to European commercial real estate markets. The indicators offer alternative estimates of real estate market volatility that may be useful in asset allocation and risk modelling, including in a regulatory context.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous research has suggested collateral has the role of sorting entrepreneurs either by observed risk or by private information. In order to test these roles, this paper develops a model which incorporates a signalling process (sorting by observed risk) into the design of an incentivecompatible menu of loan contracts which works as a self-selection mechanism (sorting by private information). It then tests this Sorting by Signalling and Self-Selection Model, using the 1998 US Survey of Small Business Finances. It reports for the first time that: high type entrepreneurs are more likely to pledge collateral and pay a lower interest rate; and entrepreneurs who transfer good signals enjoy better contracts than those transferring bad signals. These findings suggest that the Sorting by Signalling and Self-Selection Model sheds more light on entrepreneurial debt finance than either the sorting-by-observed-risk or the sorting-by-private information paradigms on their own.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the mixed logit (ML) using Bayesian methods was employed to examine willingness-to-pay (WTP) to consume bread produced with reduced levels of pesticides so as to ameliorate environmental quality, from data generated by a choice experiment. Model comparison used the marginal likelihood, which is preferable for Bayesian model comparison and testing. Models containing constant and random parameters for a number of distributions were considered, along with models in ‘preference space’ and ‘WTP space’ as well as those allowing for misreporting. We found: strong support for the ML estimated in WTP space; little support for fixing the price coefficient a common practice advocated and adopted in the environmental economics literature; and, weak evidence for misreporting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Survival times for the Acacia mangium plantation in the Segaliud Lokan Project, Sabah, East Malaysia were analysed based on 20 permanent sample plots (PSPs) established in 1988 as a spacing experiment. The PSPs were established following a complete randomized block design with five levels of spacing randomly assigned to units within four blocks at different sites. The survival times of trees in years are of interest. Since the inventories were only conducted annually, the actual survival time for each tree was not observed. Hence, the data set comprises censored survival times. Initial analysis of the survival of the Acacia mangium plantation suggested there is block by spacing interaction; a Weibull model gives a reasonable fit to the replicate survival times within each PSP; but a standard Weibull regression model is inappropriate because the shape parameter differs between PSPs. In this paper we investigate the form of the non-constant Weibull shape parameter. Parsimonious models for the Weibull survival times have been derived using maximum likelihood methods. The factor selection for the parameters is based on a backward elimination procedure. The models are compared using likelihood ratio statistics. The results suggest that both Weibull parameters depend on spacing and block.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The identification of non-linear systems using only observed finite datasets has become a mature research area over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities have been intensively studied and widely used due to the availability of many linear-learning algorithms and their inherent convergence conditions. This article presents a systematic overview of basic research on model selection approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system identification is to find the minimal model with the best model generalisation performance from observational data only. The important concepts in achieving good model generalisation used in various non-linear system-identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective criteria based on the cross validation and experimental design. A significant advance in machine learning has been the development of the support vector machine as a means for identifying kernel models based on the structural risk minimisation principle. The developments on the convex optimisation-based model construction algorithms including the support vector regression algorithms are outlined. Input selection algorithms and on-line system identification algorithms are also included in this review. Finally, some industrial applications of non-linear models are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In financial decision-making, a number of mathematical models have been developed for financial management in construction. However, optimizing both qualitative and quantitative factors and the semi-structured nature of construction finance optimization problems are key challenges in solving construction finance decisions. The selection of funding schemes by a modified construction loan acquisition model is solved by an adaptive genetic algorithm (AGA) approach. The basic objectives of the model are to optimize the loan and to minimize the interest payments for all projects. Multiple projects being undertaken by a medium-size construction firm in Hong Kong were used as a real case study to demonstrate the application of the model to the borrowing decision problems. A compromise monthly borrowing schedule was finally achieved. The results indicate that Small and Medium Enterprise (SME) Loan Guarantee Scheme (SGS) was first identified as the source of external financing. Selection of sources of funding can then be made to avoid the possibility of financial problems in the firm by classifying qualitative factors into external, interactive and internal types and taking additional qualitative factors including sovereignty, credit ability and networking into consideration. Thus a more accurate, objective and reliable borrowing decision can be provided for the decision-maker to analyse the financial options.