22 resultados para Saccharomyces bayanus

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to determine the distribution of total selenium (Se) and of the proportion of total Se comprised as the selenized amino acids selenomethionine (SeMet) and selenocysteine (SeCys) within the post mortem tissues of lambs that were fed high dose selenized enriched yeast (SY), derived from a specific strain of Saccharomyces cerevisae CNCM (Collection Nationale de Culture de Micro-organism) I-3060. Thirty two Texel X Suffolk lambs (6.87 ± 0.23 kg BW) were offered both reconstituted milk replacer and a pelleted diet, both of which had been either supplemented with high SY (6.30 ± 0.18 mg Se/kg DM) or unsupplemented (0.13 ± 0.01 mg Se/kg of DM), depending on treatment designation, for a continuous period of 91 d. At enrollment and 28, 56 and 91 d following enrollment lambs were blood sampled. At the completion of the treatment period, five lambs from each treatment group were euthanased and samples of heart, liver, kidney and skeletal muscle (Longissimus Dorsi and Psoas Major) were retained for Se analysis. The inclusion of high SY increased (P < 0.001) whole blood Se concentration, reaching a maximum mean value of 815.2 ± 19.1 ng Se/mL compared with 217.8 ± 9.1 ng Se/mL in control animals. Tissue total Se concentrations were significantly (P < 0.001) higher in SY supplemented animals than in controls irrespective of tissue type; values were 26, 16, 8 and 3 times higher in skeletal muscle, liver, heart and kidney tissue of HSY lambs when compared to controls. however, the distribution of total Se and the proportions of total Se comprised as either SeMet or SeCys differed between tissue types. Selenocysteine was the predominant selenized amino acid in glandular tissues, such the liver and kidney. irrespective of treatment, although absolute values were markedly higher in HSY lambs. Conversely selenomethionine was the predominat selenized amino acid in cardiac and skeletal muscle (Longissimus Dorsi, and Psoas Major) tissues in HSY animals, although the same trend was not apparent for control lambs in which SeCys was the predominant selenized amino acid. It was concluded that there were increases in both whole blood and tissue total Se concentrations as a result of dietary supplementation with high dose of SY. Furthermore, distribution of total Se and Se species differed between both treatment designation and tissue type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective was to determine the concentration of total selenium (Se) and the proportion of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in post mortem tissues of lambs in the six weeks period following the withdrawal of a diet containing high dose selenized yeast (SY), derived from a specific strain of Saccharomyces cerevisae CNCM (Collection Nationale de Culture de Micro-organism) I-3060. Thirty Texel x Suffolk lambs used in this study had previously received diets (91 days) containing either high dose SY (HSY; 6.30 mg Se/kg DM) or an unsupplemented control (C; 0.13 mg Se/kg DM). Following the period of supplementation all lambs were then offered a complete pelleted diet, without additional Se (0.15 mg Se/kg DM), for 42 days. At enrollment and 21 and 42 days later, five lambs from each treatment were blood sampled, euthanased and samples of heart, liver, kidney and skeletal muscle (Longissimus Dorsi and Psoas Major) tissue were retained. Total Se concentration in whole blood and tissues was significantly (P < 0.001) higher in HSY lambs at all time points that had previously received long term exposure to high dietary concentrations of SY. The distribution of total Se and the proportions of total Se comprised as SeMet and SeCys differed between tissues, treatment and time points. Total Se was greatest in HSY liver and kidney (22.64 and 18.96 mg Se/kg DM, respectively) and SeCys comprised the greatest proportion of total Se. Conversely, cardiac and skeletal muscle (Longissimus Dorsi and Psoas Major) tissues had lower total Se concentration (10.80, 7.02 and 7.82 mg Se/kg DM, respectively) and SeMet was the predominant selenized amino acid. Rates of Se clearance in HSY liver (307 µg Se/day) and kidney (238 µg Se/day) were higher compared with HSY cardiac tissue (120 µg Se/day) and skeletal muscle (20 µg Se/day). In conclusion differences in Se clearance rates were different between tissue types, reflecting the relative metabolic activity of each tissue, and appear to be dependant upon the proportions of total Se comprised as either SeMet or SeCys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the study was to determine if there were adverse effects on animal health and performance when a range of ruminant animals species were fed at least 10 times the maximum permitted European Union (EU) selenium (Se) dietary inclusion rate (0.568 mg Se/kg DM) in the form of selenium enriched yeast (SY) derived from a specific strain of Saccharomyces cerevisiae CNCM I-3060. In a series of studies, dairy cows, beef cattle, calves and lambs were offered either a control diet which contained no Se supplement or a treatment diet which contained the same basal feed ingredients plus a SY supplement which increased total dietary Se from 0.15 to 6.25, 0.20 to 6.74, 0.15 to 5.86 and 0.14 to 6.63 mg Se/kg DM, respectively. The inclusion of the SY supplement (P < 0.001) increased whole blood Se concentrations, reaching maximum mean values of 716, 1,505, 1,377, and 724 ng Se/mL for dairy cattle, beef cattle, calves and lambs, respectively. Selenomethionine accounted for 10% of total whole blood Se in control animals whereas the proportion in SY animals ranged between 40 and 75%. Glutathione peroxidase (EC 1.11.1.9) activity was higher (P < 0.05) in SY animals when compared with controls. A range of other biochemical and hematological parameters were assessed, but few differences of biological significance were established between treatments groups. There were no differences between treatment groups within each species with regard to animal physical performance or overall animal health. It was concluded that there were no adverse effects on animal health, performance and voluntary feed intake to the administration of at least ten times the EU maximum, or approximately twenty times the US FDA permitted concentration of dietary Se in the form of SY derived from a specific strain of Saccharomyces cerevisiae CNCM I-3060.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective was to determine the concentration of total selenium (Se) and the proportion of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in post mortem tissues of beef cattle offered diets containing graded additions of selenized enriched yeast (SY) [Saccharomyces cerevisae CNCM I-3060]), or sodium selenite (SS). Oxidative stability and tissue glutathione peroxidase (GSH-Px) activity of edible muscle tissue were assessed 10 d post-mortem. Thirty two beef cattle were offered, for a period of 112 d, a total mixed ration which had either been supplemented with SY (0, 0.15 or 0.35 mg Se/kg DM) or SS (0.15 mg Se/kg DM). At enrollment (0 d) and at 28, 56, 84 and 112 d following enrollment, blood samples were taken for Se and Se species determination, as well as whole blood GSH-Px activity. At the end of the study beef cattle were euthanized and samples of heart, liver, kidney, and skeletal muscle (LM and psoas major) were retained for Se and Se species determination. Tissue GSH-Px activity and thiobarbituric acid reactive substances (TBARS) were determined in skeletal muscle tissue (LM only). The incorporation into the diet of ascending concentrations of Se as SY increased whole blood total Se and the proportion of total Se comprised as SeMet, as well as GSH-Px activity. There was also a dose dependant response to the graded addition of SY on total Se and proportion of total Se as SeMet in all tissues and GSH-Px activity in skeletal muscle tissue. Furthermore, total Se concentration of whole blood and tissues was greater in those animals offered SY when compared with those receiving a comparable dose of SS, indicating an improvement in Se availability and tissue Se retention. Likewise, GSH-Px activity in whole blood and LM was greater in those animals offered SY when compared with those receiving a comparable dose of SS. However, these increases in tissue total Se and GSH-Px activity appeared to have little or no effect in meat oxidative stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forty-multiparous Holstein cows were used in a 16-wk continuous design study to determine the effects of either selenium (Se) source, selenized yeast (SY) (derived from a specific strain of Saccharomyces cerevisiae CNCM I-3060 Sel-Plex®) or sodium selenite (SS), or inclusion rate of SY on Se concentration and speciation in blood, milk and cheese. Cows received ad libitum a TMR with 1:1 forage:concentrate ratio on a dry matter (DM) basis. There were four diets (T1-T4) which differed only in either source or dose of Se additive. Estimated total dietary Se for T1 (no supplement), T2 (SS), T3 (SY) and T4 (SY) was 0.16, 0.30, 0.30 and 0.45 mg/kg DM, respectively. Blood and milk samples were taken at 28 day intervals and at each time point there were positive linear effects of SY on Se concentration in blood and milk. At day 112 blood and milk Se values for T1-T4 were 177, 208, 248, 279 ± 6.6 and 24, 38, 57, 72 ± 3.7 ng/g fresh material, respectively and indicate improved uptake and incorporation of Se from SY. While selenocysteine (SeCys) was the main selenised amino acid in blood its concentration was not markedly affected by treatment, but the proportion of total Se as selenomethionine (SeMet) increased with increasing inclusion rate of SY. In milk, there were no marked treatment effects on SeCys content, but Se source had a marked effect on the proportion of total Se as SeMet. At day 112 replacing SS (T2) with SY (T3) increased the SeMet concentration of milk from 36 to 111 ng Se/g and its concentration increased further to 157 ng Se/g as the inclusion rate of SY increased further (T4) to provide 0.45 mg Se/kg TMR. Neither Se source nor inclusion rate effected the keeping quality of milk. At day 112, milk from T1, T2, and T3 was made into a hard cheese and Se source had a marked effect on total Se and the proportion of total Se comprised as either SeMet or SeCys. Replacing SS (T2) with SY (T3) increased total Se, SeMet and SeCys content from 180 to 340 ng Se/g, 57 to 153 ng Se/g and 52 to 92 ng Se/g, respectively. Key words: dairy cow, milk and cheese, selenomethionine, selenocysteine, milk keeping quality

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives were to determine effects of graded levels of selenized yeast derived from a specific strain of Saccharomyces cerevisiae (CNCM I-3060) on animal performance and in selenium concentrations in the blood, milk, feces, and urine of dairy cows compared with sodium selenite; and to provide preliminary data on the proportion of selenium as selenomethionine in the milk and blood. Twenty Holstein cows were used in a 5 × 5 Latin square design study in which all cows received the same total mixed rations, which varied only in source or concentration of dietary selenium. There were 5 experimental treatments. Total dietary selenium of treatment 1, which received no added selenium, was 0.15 mg/kg of dry matter, whereas values for treatments 2, 3, and 4, derived from selenized yeast, were 0.27, 0.33, and 0.40 mg/kg of dry matter, respectively. Treatment 5 contained 0.25 mg of selenium obtained from sodium selenite/kg of dry matter. There were no significant treatment effects on animal performance, and blood chemistry and hematology showed few treatment effects. Regression analysis noted significant positive linear effects of increasing dietary selenium derived from selenized yeast on selenium concentrations in the milk, blood, urine, and feces. In addition, milk selenium results indicated improved bioavailability of selenium from selenized yeast, compared with sodium selenite. Preliminary analyses showed that compared with sodium selenite, the use of selenized yeast increased the concentration of selenomethionine in the milk and blood. There was no indication of adverse effects on cow health associated with the use of selenized yeast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [ nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand beta-sheet holding two alpha-helices of three and four turns that are oriented antiparallel to the beta-strands. Two antiparallel two-strand beta-sheets and two 3(10)-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential reproductive value of arbuscular mycorrhizal fungi (Gloinus intraradices and Glomus invermaium), root pathogenic fungi (Rhizoctonia solani and Fusarium culmorum) and saprotrophic fungi (Penicillium hordei and Trichoderma harzianum) were examined for the collembolans Folsomia candida Willem and Folsomia fimetaria L. Dried baker's yeast (Saccharomyces cerevisiae) was used as a reference standard food in laboratory cultures. Collembolan performance was determined as final size, fecundity and population growth rate after when fed the fungal food sources for 31 days. The mycorrhizal fungi gave the least growth and fecundity compared with the other fungi, but G. intraradices gave good fecundity for F. candida. In terms of growth, Baker's yeast was a high-quality food for both adults and juveniles of both species, but it was a poorer food in terms of fecundity of F. candida. Preference of the fungi in all possible pairwise combinations showed that although F. fimetaria did not perform well on Glomus spp. and F. candida did not grow well on Glomus spp. their preference for these fungi did not reflect this. The highest fecundity was seen with the root pathogen F. culmorum. Different quality indicators such as the C:N ratio of the fungal food sources as well as other biological parameters are discussed in relation to their reproductive value and Collembola preferential feeding. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivation: We compare phylogenetic approaches for inferring functional gene links. The approaches detect independent instances of the correlated gain and loss of pairs of genes from species' genomes. We investigate the effect on results of basing evidence of correlations on two phylogenetic approaches, Dollo parsminony and maximum likelihood (ML). We further examine the effect of constraining the ML model by fixing the rate of gene gain at a low value, rather than estimating it from the data. Results: We detect correlated evolution among a test set of pairs of yeast (Saccharomyces cerevisiae) genes, with a case study of 21 eukaryotic genomes and test data derived from known yeast protein complexes. If the rate at which genes are gained is constrained to be low, ML achieves by far the best results at detecting known functional links. The model then has fewer parameters but it is more realistic by preventing genes from being gained more than once. Availability: BayesTraits by M. Pagel and A. Meade, and a script to configure and repeatedly launch it by D. Barker and M. Pagel, are available at http://www.evolution.reading.ac.uk .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Escherichia coli possesses iron transporters specific for either Fe2+ or Fe3+. Although Fe2+ is far more soluble than Fe3+, it rapidly oxidizes aerobically at pH >= 7. Thus, FeoAB, the major Fe2+ transporter of E. coli, operates anaerobically. However, Fe2+ remains stable aerobically under acidic conditions, although a low-pH Fe2+ importer has not been previously identified. Here we show that ycdNOB (efeUOB) specifies the first such transporter. efeUOB is repressed at high pH by CpxAR, and is Fe2+-Fur repressed. EfeU is homologous to the high-affinity iron permease, Ftr1p, of Saccharomyces cerevisiae and other fungi. EfeO is periplasmic with a cupredoxin N-terminal domain; EfeB is also periplasmic and is haem peroxidase-like. All three Efe proteins are required for Efe function. The efeU gene of E. coli K-12 is cryptic due to a frameshift mutation - repair of the single-base-pair deletion generates a functional EfeUOB system. In contrast, the efeUOB operon of the enterohaemorrhagic strain, O157:1147, lacks any frameshift and is functional. A 'wild-type' K-12 strain bearing a functional EfeUOB displays a major growth advantage under aerobic, low-pH, low-iron conditions when a competing metal is provided. Fe-55 transport assays confirm the ferrous iron specificity of EfeUOB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of sufficient quantities of protein is an essential prelude to a structure determination, but for many viral and human proteins this cannot be achieved using prokaryotic expression systems. Groups in the Structural Proteomics In Europe ( SPINE) consortium have developed and implemented high- throughput ( HTP) methodologies for cloning, expression screening and protein production in eukaryotic systems. Studies focused on three systems: yeast ( Pichia pastoris and Saccharomyces cerevisiae), baculovirusinfected insect cells and transient expression in mammalian cells. Suitable vectors for HTP cloning are described and results from their use in expression screening and protein-production pipelines are reported. Strategies for coexpression, selenomethionine labelling ( in all three eukaryotic systems) and control of glycosylation ( for secreted proteins in mammalian cells) are assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim was to investigate (i) the occurrence of sublethal injury in Listeria monocytogenes, Escherichia coli, and Saccharomyces cerevisiae after high hydrostatic pressure (HHP) treatment as a function of the treatment medium pH and composition and (ii) the relationship between the occurrence of sublethal injury and the inactivating effect of a combination of HHP and two antimicrobial compounds, tert-butyl hydroquinone (TBHQ) and citral. The three microorganisms showed a high proportion of sublethally injured cells (up to 99.99% of the surviving population) after HHP. In E. coli and L. monocytogenes, the extent of inactivation and sublethal injury depended on the pH and the composition of the treatment medium, whereas in S. cerevisiae, inactivation and sublethal injury were independent of medium pH or composition under the conditions tested. TBHQ alone was not lethal to E. coli or L. monocytogenes but acted synergistically with HHP and 24-h refrigeration, resulting in a viability decrease of >5 log(10) cycles of both organisms. The antimicrobial effect of citral depended on the microorganism and the treatment medium pH. Acting alone for 24 h under refrigeration, 1,000 ppm of citral caused a reduction of 5 log(10) cycles of E. coli at pH 7.0 and almost 3 log(10) cycles of L. monocytogenes at pH 4.0. The combination of citral and HHP also showed a synergistic effect. Our results have confirmed that the detection of sublethal injury after HHP may contribute to the identification of those treatment conditions under which HHP may act synergistically with other preserving processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of honey oligosaccharides on the growth of fecal bacteria was studied using an in vitro fermentation system. Prior to treatment, glucose and fructose (31.73 and 21.41 g/100 g of product, respectively) present in honey, which would be digested in the upper gut, were removed to avoid any influence on bacterial populations in the fermentations. Nanofiltration, yeast (Saccharomyces cerevisiae) treatment, and adsorption onto activated charcoal were used to remove monosaccharides. Prebiotic (microbial fermentation) activities of the three honey oligosaccharide fractions and the honey sample were studied and compared with fructooligosaccharide (FOS), using 1% (w/v) fecal bacteria in an in vitro fermentation system (10 mg of carbohydrate, 1.0 mL of basal medium). A prebiotic index (PI) was calculated for each carbohydrate source. Honey oligosaccharides seem to present potential prebiotic activity (PI values between 3.38 and 4.24), increasing the populations of bifidobacteria and lactobacilli, although not to the levels of FOS (PI of 6.89).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forty multiparous Holstein cows were used in a 16-week continuous design study to determine the effects of either selenium (Se) source, selenised yeast (SY) (derived from a specific strain of Saccharomyces cerevisiae CNCM 1-3060) or sodium selenite (SS), or Se inclusion rate in the form of SY in the diets of lactating dairy cows on the Se concentration and speciation in blood, milk and cheese. Cows received ad libitum a total mixed ration (TMR) with a 1 : 1 forage: concentrate ratio on a dry matter (DM) basis. There were four diets (T-1 to T-4), which differed only in either source or dose of Se additive. Estimated total dietary Se for T, (no supplement), T-2 (SS), T-3 (SY) and T-4 (SY) was 0.16, 0.30, 0.30 and 0.45 mg/kg DM, respectively. Blood and milk samples were taken at 28-day intervals and at each time point there were positive linear effects of Se in the form of SY on the Se concentration in blood and milk. At day 112 blood and milk Se values for T-1 to T-4 were 177, 208, 248 and 279 +/- 6.6 and 24, 38, 57 and 72 +/- 3.7 ng/g fresh material, respectively, and indicate improved uptake and incorporation of Se from SY. In whole blood, selenocysteine (SeCys) was the main selenised amino acid and the concentration of selenomethionine (SeMet) increased with the increasing inclusion rate of SY In milk, there were no marked treatment effects on the SeCys content, but Se source had a marked effect on the concentration of SeMet. At day 112 replacing SS (T-2) with SY (T-3) increased the SeMet concentration of milk from 36 to 111 ng Se/g and its concentration increased further to 157ng Se/g dried sample as the inclusion rate of SY increased further (T-4) to provide 0.45 mg Se/kg TMR. Neither Se source nor inclusion rate affected the keeping quality of milk. At day 112 milk from T-1, T-2 and T-3 was made into a hard cheese and Se source had a marked effect on total Se and the concentration of total Se comprised as either SeMet or SeCys. Replacing SS (T-2) with SY (T-3) increased total Se, SeMet and SeCys content in cheese from 180 to 340 ng Se/g, 57 to 153 ng Se/g and 52 to 92 ng Se/g dried sample, respectively. The use of SY to produce food products with enhanced Se content as a means of meeting the Se requirements is discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: To test the possibility that wines available in the marketplace may contain culturable yeasts and to evaluate the 5.8S-ITS rDNA sequence analysis as adequate means for the identification of isolates. Methods and Results: As a case study, typical Greek wines were surveyed. Sequence analysis of the 5.8S-ITS rDNA was tested for its robustness in species or strain identification. Sixteen isolates could be assigned into the species Brettanomyces bruxellensis, Saccharomyces cerevisiae and Rhodotorula pinicola, whereas four isolates could not be safely identified. B. bruxellensis was the dominant species present in house wines, while non-Saccharomyces sp. were viable in aged wines of high alcohol content. Conclusions: Yeast population depends on postfermentation procedures or storage conditions. Although 5.8S-ITS rDNA sequence analysis is generally a rapid method to identify wine yeast isolates at the species level, or even below that, it may not be sufficient for some genera. Significance and Impact of the Study: This is the first report to show that commercial wines may possess diverse and potentially harmful yeast populations. The knowledge of yeasts able to reside in this niche environment is essential towards integrated quality assurance programmes. For selected species, the 5.8S-ITS rDNA sequence analysis is a rapid and accurate means.