4 resultados para SWINE-FEVER VIRUS
em CentAUR: Central Archive University of Reading - UK
Resumo:
A new flavivirus, Ecuador Paraiso Escondido virus (EPEV), named after the village where it was discovered, was isolated from sand flies (Psathyromyia abonnenci, formerly Lutzomyia abonnenci) that are unique to the New World. This represents the first sand fly-borne flavivirus identified in the New World. EPEV exhibited a typical flavivirus genome organization. Nevertheless, the maximum pairwise amino acid sequence identity with currently recognized flaviviruses was 52.8%. Phylogenetic analysis of the complete coding sequence showed that EPEV represents a distinct clade which diverged from a lineage that was ancestral to the nonvectored flaviviruses Entebbe bat virus, Yokose virus, and Sokoluk virus and also the Aedes-associated mosquito-borne flaviviruses, which include yellow fever virus, Sepik virus, Saboya virus, and others. EPEV replicated in C6/36 mosquito cells, yielding high infectious titers, but failed to reproduce either in vertebrate cell lines (Vero, BHK, SW13, and XTC cells) or in suckling mouse brains. This surprising result, which appears to eliminate an association with vertebrate hosts in the life cycle of EPEV, is discussed in the context of the evolutionary origins of EPEV in the New World.The flaviviruses are rarely (if ever) vectored by sand fly species, at least in the Old World. We have identified the first representative of a sand fly-associated flavivirus, Ecuador Paraiso Escondido virus (EPEV), in the New World. EPEV constitutes a novel clade according to current knowledge of the flaviviruses. Phylogenetic analysis of the virus genome showed that EPEV roots the Aedes-associated mosquito-borne flaviviruses, including yellow fever virus. In light of this new discovery, the New World origin of EPEV is discussed together with that of the other flaviviruses.
Resumo:
Here, we analyze the complete coding sequences of all recognized tick-borne flavivirus species, including Gadgets Gully, Royal Farm and Karshi virus, seabird-associated flaviviruses, Kadam virus and previously uncharacterized isolates of Kyasanur Forest disease virus and Omsk hemorrhagic fever virus. Significant taxonomic improvements are proposed, e.g. the identification of three major groups (mammalian, seabird and Kadam tick-borne flavivirus groups), the creation of a new species (Karshi virus) and the assignment of Tick-borne encephalitis and Louping ill viruses to a unique species (Tick-borne encephalitis virus) including four viral types (i.e. Western Tick-borne encephalitis virus, Eastern Tick-borne encephalitis virus, Turkish sheep Tick-borne encephalitis virus and Louping ill Tick-borne encephalitis virus). The analyses also suggest a complex relationship between viruses infecting birds and those infecting mammals. Ticks that feed on both categories of vertebrates may constitute the evolutionary bridge between the three distinct identified lineages.
Resumo:
The emergence in 2009 of a swine-origin H1N1 influenza virus as the first pandemic of the 21st Century is a timely reminder of the international public health impact of influenza viruses, even those associated with mild disease. The widespread distribution of highly pathogenic H5N1 influenza virus in the avian population has spawned concern that it may give rise to a human influenza pandemic. The mortality rate associated with occasional human infection by H5N1 virus approximates 60%, suggesting that an H5N1 pandemic would be devastating to global health and economy. To date, the H5N1 virus has not acquired the propensity to transmit efficiently between humans. The reasons behind this are unclear, especially given the high mutation rate associated with influenza virus replication. Here we used a panel of recombinant H5 hemagglutinin (HA) variants to demonstrate the potential for H5 HA to bind human airway epithelium, the predominant target tissue for influenza virus infection and spread. While parental H5 HA exhibited limited binding to human tracheal epithelium, introduction of selected mutations converted the binding profile to that of a current human influenza strain HA. Strikingly, these amino-acid changes required multiple simultaneous mutations in the genomes of naturally occurring H5 isolates. Moreover, H5 HAs bearing intermediate sequences failed to bind airway tissues and likely represent mutations that are an evolutionary "dead end." We conclude that, although genetic changes that adapt H5 to human airways can be demonstrated, they may not readily arise during natural virus replication. This genetic barrier limits the likelihood that current H5 viruses will originate a human pandemic.
Resumo:
The first pandemic of the 21(st) century, pandemic H1N1 2009 (pH1N1 2009), emerged from a swine-origin source. Although human infections with swine-origin influenza have been reported previously, none went on to cause a pandemic or indeed any sustained human transmission. In previous pandemics, specific residues in the receptor binding site of the haemagglutinin (HA) protein of influenza have been associated with the ability of the virus to transmit between humans. In the present study we investigated the effect of residue 227 in HA on cell tropism and transmission of pH1N1 2009. In pH1N1 2009 and recent seasonal H1N1 viruses this residue is glutamic acid, whereas in swine influenza it is alanine. Using human airway epithelium, we show a differential cell tropism of pH1N1 2009 compared to pH1N1 2009 E227A and swine influenza suggesting this residue may alter the sialic acid conformer binding preference of the HA. Furthermore, both pH1N1 2009 E227A and swine influenza multi-cycle viral growth was found to be attenuated in comparison to pH1N1 2009 in human airway epithelium. However this altered tropism and viral growth in human airway epithelium did not abrogate respiratory droplet transmission of pH1N1 2009 E227A in ferrets. Thus, acquisition of E at residue 227 was not solely responsible for the ability of pH1N1 2009 to transmit between humans.