5 resultados para SURFACE-RELIEF GRATINGS

em CentAUR: Central Archive University of Reading - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Earlier studies showed that the disparity with respect to other visible points could not explain stereoacuity performance, nor could various spatial derivatives of disparity [Glennerster, A., McKee, S. P., & Birch, M. D. (2002). Evidence of surface-based processing of binocular disparity. Current Biology, 12:825-828; Petrov, Y., & Glennerster, A. (2004). The role of the local reference in stereoscopic detection of depth relief. Vision Research, 44:367-376.] Two possible cues remain: (i) local changes in disparity gradient or (ii) disparity with respect to an interpolated line drawn through the reference points. Here, we aimed to distinguish between these two cues. Subjects judged.. in a two AFC paradigm, whether a target dot was in front of a plane defined by three reference dots or, in other experiments, in front of a line defined by two reference dots. We tested different slants of the reference line or plane and different locations of the target relative to the reference points. For slanted reference lines or plane, stereoacuity changed little as the target position was varied. For judgments relative to a frontoparallel reference line, stereoacuity did vary with target position, but less than would be predicted by disparity gradient change. This provides evidence that disparity with respect to the reference plane is an important cue. We discuss the potential advantages of this measure in generating a representation of surface relief that is invariant to viewpoint transformations. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS* method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS* method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS* method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS* and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS* method and illustrate the ill-conditioning that arises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wide-ranging survey of twisted growth in polymers by Lotz and Cheng cites extensive evidence consistent with the relief of surface stress being the underlying cause. This complementary note contributes to the discussion by making three main points. First, it is necessary to go further and explain the key issue of how a consistent twist is maintained when, as commonly, this habit has a lower symmetry than the crystallographic lattice. Detailed study has shown that, in polyethylene, this occurs by reorganization of the initial fold surfaces. Second, the suggested explanation by Keith and Padden that. in polyethylene, the asymmetric habit derives from molecules adding to lamellae with inclined fold surfaces is invalid being doubly inconsistent with observation. Third, twisting has now been linked to faster growth by study of row structures in polyethylene. This produces inherently rough fold surfaces in Regime II whose internal stresses drive reorganization and twisting. For slower (Regime I) growth, fold surfaces form with and maintain ordered packing so providing no basis for twisting. These new insights radically alter the context of twisted growth and provide a firm factual basis for further work. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a Nystr¨om/product integration method for a class of second kind integral equations on the real line which arise in problems of two-dimensional scalar and elastic wave scattering by unbounded surfaces. Stability and convergence of the method is established with convergence rates dependent on the smoothness of components of the kernel. The method is applied to the problem of acoustic scattering by a sound soft one-dimensional surface which is the graph of a function f, and superalgebraic convergence is established in the case when f is infinitely smooth. Numerical results are presented illustrating this behavior for the case when f is periodic (the diffraction grating case). The Nystr¨om method for this problem is stable and convergent uniformly with respect to the period of the grating, in contrast to standard integral equation methods for diffraction gratings which fail at a countable set of grating periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flash floods pose a significant danger for life and property. Unfortunately, in arid and semiarid environment the runoff generation shows a complex non-linear behavior with a strong spatial and temporal non-uniformity. As a result, the predictions made by physically-based simulations in semiarid areas are subject to great uncertainty, and a failure in the predictive behavior of existing models is common. Thus better descriptions of physical processes at the watershed scale need to be incorporated into the hydrological model structures. For example, terrain relief has been systematically considered static in flood modelling at the watershed scale. Here, we show that the integrated effect of small distributed relief variations originated through concurrent hydrological processes within a storm event was significant on the watershed scale hydrograph. We model these observations by introducing dynamic formulations of two relief-related parameters at diverse scales: maximum depression storage, and roughness coefficient in channels. In the final (a posteriori) model structure these parameters are allowed to be both time-constant or time-varying. The case under study is a convective storm in a semiarid Mediterranean watershed with ephemeral channels and high agricultural pressures (the Rambla del Albujón watershed; 556 km 2 ), which showed a complex multi-peak response. First, to obtain quasi-sensible simulations in the (a priori) model with time-constant relief-related parameters, a spatially distributed parameterization was strictly required. Second, a generalized likelihood uncertainty estimation (GLUE) inference applied to the improved model structure, and conditioned to observed nested hydrographs, showed that accounting for dynamic relief-related parameters led to improved simulations. The discussion is finally broadened by considering the use of the calibrated model both to analyze the sensitivity of the watershed to storm motion and to attempt the flood forecasting of a stratiform event with highly different behavior.