18 resultados para SURFACE PARAMETERIZATION SIB2

em CentAUR: Central Archive University of Reading - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many urban surface energy balance models now exist. These vary in complexity from simple schemes that represent the city as a concrete slab, to those which incorporate detailed representations of momentum and energy fluxes distributed within the atmospheric boundary layer. While many of these schemes have been evaluated against observations, with some models even compared with the same data sets, such evaluations have not been undertaken in a controlled manner to enable direct comparison. For other types of climate model, for instance the Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) experiments (Henderson-Sellers et al., 1993), such controlled comparisons have been shown to provide important insights into both the mechanics of the models and the physics of the real world. This paper describes the progress that has been made to date on a systematic and controlled comparison of urban surface schemes. The models to be considered, and their key attributes, are described, along with the methodology to be used for the evaluation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no com- parison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling ap- proaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Turbulent surface fluxes of momentum and sensible and latent heat as well as surface temperature, air temperature, air humidity, and wind speed were measured by the German Falcon research aircraft over the marginal ice zone (MIZ) of the northern Baltic Sea and the Fram Strait. Applying the bulk formulas and the stability functions to the measurements, the roughness lengths for momentum z0, sensible heat zT, and latent heat zq were calculated. As mean values over a wide range of sea ice conditions, we obtain z0 = 5 � 10�4 m, zT = 1 � 10�8 m, and zq = 1 � 10�7 m. These correspond to the following mean values (± standard deviations) of neutral transfer coefficients reduced to 10 m height, CDN10 = (1.9 ± 0.8) � 10�3, CHN10 = (0.9 ± 0.3) � 10�3, and CEN10 = (1.0 ± 0.2) � 10�3. An average ratio of z0/zT � 104 was observed over the range of 10�6 m < z0 < 10�2 m and differs from previously published results over compact sea ice (10�1 < z0/zT < 103). Other observational results over heterogeneous sea ice do not exist. However, our z0/zT ratio approximately agrees with observations over heterogeneous land surfaces. Flux parameterizations based on commonly used roughness lengths ratios (z0 = zT = zq) overestimate the surface heat fluxes compared to our measurements by more than 100%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relative contribution of resolved and parameterized surface drag towards balancing the atmospheric angular momentum flux convergence (AMFC), and their sensitivity to horizontal resolution and parameterization, are investigated in an atmospheric model. This sensitivity can be difficult to elucidate in free-running climate models, in which the AMFC varies with changing climatologies and, as a result, the relative contributions of surface terms balancing the AMFC also vary. While the sensitivity question has previously been addressed using short-range forecasts, we demonstrate that a nudging framework is an effective method for constraining the AMFC. The Met Office Unified Model is integrated at three horizontal resolutions ranging from 130 km (N96) to 25 km (N512) while relaxing the model’s wind and temperature fields towards the ERAinterim reanalysis within the altitude regions of maximum AMFC. This method is validated against short range forecasts and good agreement is found. These experiments are then used to assess the fidelity of the exchange between parameterized and resolved orographic torques with changes in horizontal resolution. Although the parameterized orographic torque reduces substantially with increasing horizontal resolution, there is little change in resolved orographic torque over 20N to 50N. The tendencies produced by the nudging routine indicate that the additional drag at lower horizontal resolution is excessive. When parameterized orographic blocking is removed at the coarsest of these resolutions, there is a lack of compensation, and even compensation of the opposite sense, by the boundary layer and resolved torques which is particularly pronounced over 20N to 50N. This study demonstrates that there is strong sensitivity in the behaviour of the resolved and parameterized surface drag over this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global radiation balance of the atmosphere is still poorly observed, particularly at the surface. We investigate the observed radiation balance at (1) the surface using the ARM Mobile Facility in Niamey, Niger, and (2) the top of the atmosphere (TOA) over West Africa using data from the Geostationary Earth Radiation Budget (GERB) instrument on board Meteosat-8. Observed radiative fluxes are compared with predictions from the global numerical weather prediction (NWP) version of the Met Office Unified Model (MetUM). The evaluation points to major shortcomings in the NWP model's radiative fluxes during the dry season (December 2005 to April 2006) arising from (1) a lack of absorbing aerosol in the model (mineral dust and biomass burning aerosol) and (2) a poor specification of the surface albedo. A case study of the major Saharan dust outbreak of 6–12 March 2006 is used to evaluate a parameterization of mineral dust for use in the NWP models. The model shows good predictability of the large-scale flow out to 4–5 days with the dust parameterization providing reasonable dust uplift, spatial distribution, and temporal evolution for this strongly forced dust event. The direct radiative impact of the dust reduces net downward shortwave (SW) flux at the surface (TOA) by a maximum of 200 W m−2 (150 W m−2), with a SW heating of the atmospheric column. The impacts of dust on terrestrial radiation are smaller. Comparisons of TOA (surface) radiation balance with GERB (ARM) show the “dusty” forecasts reduce biases in the radiative fluxes and improve surface temperatures and vertical thermodynamic structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The turbulent mixing in thin ocean surface boundary layers (OSBL), which occupy the upper 100 m or so of the ocean, control the exchange of heat and trace gases between the atmosphere and ocean. Here we show that current parameterizations of this turbulent mixing lead to systematic and substantial errors in the depth of the OSBL in global climate models, which then leads to biases in sea surface temperature. One reason, we argue, is that current parameterizations are missing key surface-wave processes that force Langmuir turbulence that deepens the OSBL more rapidly than steady wind forcing. Scaling arguments are presented to identify two dimensionless parameters that measure the importance of wave forcing against wind forcing, and against buoyancy forcing. A global perspective on the occurrence of waveforced turbulence is developed using re-analysis data to compute these parameters globally. The diagnostic study developed here suggests that turbulent energy available for mixing the OSBL is under-estimated without forcing by surface waves. Wave-forcing and hence Langmuir turbulence could be important over wide areas of the ocean and in all seasons in the Southern Ocean. We conclude that surfacewave- forced Langmuir turbulence is an important process in the OSBL that requires parameterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Canadian Middle Atmosphere Model is used to examine the sensitivity of simulated climate to conservation of momentum in gravity wave drag parameterization. Momentum conservation requires that the parameterized gravity wave momentum flux at the top of the model be zero and corresponds to the physical boundary condition of no momentum flux at the top of the atmosphere. Allowing momentum flux to escape the model domain violates momentum conservation. Here the impact of momentum conservation in two sets of model simulations is investigated. In the first set, the simulation of present-day climate for two model-lid height configurations, 0.001 and 10 hPa, which are identical below 10 hPa, is considered. The impact of momentum conservation on the climate with the model lid at 0.001 hPa is minimal, which is expected because of the small amount of gravity wave momentum flux reaching 0.001 hPa. When the lid is lowered to 10 hPa and momentum is conserved, there is only a modest impact on the climate in the Northern Hemisphere; however, the Southern Hemisphere climate is more adversely affected by the deflection of resolved waves near the model lid. When momentum is not conserved in the 10-hPa model the climate is further degraded in both hemispheres, particularly in winter at high latitudes, and the impact of momentum conservation extends all the way to the surface. In the second set of simulations, the impact of momentum conservation and model-lid height on the modeled response to ozone depletion in the Southern Hemisphere is considered, and it is found that the response can display significant sensitivity to both factors. In particular, both the lower-stratospheric polar temperature and surface responses are significantly altered when the lid is lowered, with the effect being most severe when momentum is not conserved. The implications with regard to the current round of Intergovernmental Panel on Climate Change model projections are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the techniques used to obtain sea surface temperature (SST) retrievals from the Geostationary Operational Environmental Satellite 12 (GOES-12) at the National Oceanic and Atmospheric Administration’s Office of Satellite Data Processing and Distribution. Previous SST retrieval techniques relying on channels at 11 and 12 μm are not applicable because GOES-12 lacks the latter channel. Cloud detection is performed using a Bayesian method exploiting fast-forward modeling of prior clear-sky radiances using numerical weather predictions. The basic retrieval algorithm used at nighttime is based on a linear combination of brightness temperatures at 3.9 and 11 μm. In comparison with traditional split window SSTs (using 11- and 12-μm channels), simulations show that this combination has maximum scatter when observing drier colder scenes, with a comparable overall performance. For daytime retrieval, the same algorithm is applied after estimating and removing the contribution to brightness temperature in the 3.9-μm channel from solar irradiance. The correction is based on radiative transfer simulations and comprises a parameterization for atmospheric scattering and a calculation of ocean surface reflected radiance. Potential use of the 13-μm channel for SST is shown in a simulation study: in conjunction with the 3.9-μm channel, it can reduce the retrieval error by 30%. Some validation results are shown while a companion paper by Maturi et al. shows a detailed analysis of the validation results for the operational algorithms described in this present article.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The parameterization of surface heat-flux variability in urban areas relies on adequate representation of surface characteristics. Given the horizontal resolutions (e.g. ≈0.1–1km) currently used in numerical weather prediction (NWP) models, properties of the urban surface (e.g. vegetated/built surfaces, street-canyon geometries) often have large spatial variability. Here, a new approach based on Urban Zones to characterize Energy partitioning (UZE) is tested within a NWP model (Weather Research and Forecasting model;WRF v3.2.1) for Greater London. The urban land-surface scheme is the Noah/Single-Layer Urban Canopy Model (SLUCM). Detailed surface information (horizontal resolution 1 km)in central London shows that the UZE offers better characterization of surface properties and their variability compared to default WRF-SLUCM input parameters. In situ observations of the surface energy fluxes and near-surface meteorological variables are used to select the radiation and turbulence parameterization schemes and to evaluate the land-surface scheme

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments to the Local-scale Urban Meteorological Parameterization Scheme (LUMPS), a simple model able to simulate the urban energy balance, are presented. The major development is the coupling of LUMPS to the Net All-Wave Radiation Parameterization (NARP). Other enhancements include that the model now accounts for the changing availability of water at the surface, seasonal variations of active vegetation, and the anthropogenic heat flux, while maintaining the need for only commonly available meteorological observations and basic surface characteristics. The incoming component of the longwave radiation (L↓) in NARP is improved through a simple relation derived using cloud cover observations from a ceilometer collected in central London, England. The new L↓ formulation is evaluated with two independent multiyear datasets (Łódź, Poland, and Baltimore, Maryland) and compared with alternatives that include the original NARP and a simpler one using the National Climatic Data Center cloud observation database as input. The performance for the surface energy balance fluxes is assessed using a 2-yr dataset (Łódź). Results have an overall RMSE < 34 W m−2 for all surface energy balance fluxes over the 2-yr period when

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Surface Urban Energy and Water Balance Scheme (SUEWS) is developed to include snow. The processes addressed include accumulation of snow on the different urban surface types: snow albedo and density aging, snow melting and re-freezing of meltwater. Individual model parameters are assessed and independently evaluated using long-term observations in the two cold climate cities of Helsinki and Montreal. Eddy covariance sensible and latent heat fluxes and snow depth observations are available for two sites in Montreal and one in Helsinki. Surface runoff from two catchments (24 and 45 ha) in Helsinki and snow properties (albedo and density) from two sites in Montreal are also analysed. As multiple observation sites with different land-cover characteristics are available in both cities, model development is conducted independent of evaluation. The developed model simulates snowmelt related runoff well (within 19% and 3% for the two catchments in Helsinki when there is snow on the ground), with the springtime peak estimated correctly. However, the observed runoff peaks tend to be smoother than the simulated ones, likely due to the water holding capacity of the catchments and the missing time lag between the catchment and the observation point in the model. For all three sites the model simulates the timing of the snow accumulation and melt events well, but underestimates the total snow depth by 18–20% in Helsinki and 29–33% in Montreal. The model is able to reproduce the diurnal pattern of net radiation and turbulent fluxes of sensible and latent heat during cold snow, melting snow and snow-free periods. The largest model uncertainties are related to the timing of the melting period and the parameterization of the snowmelt. The results show that the enhanced model can simulate correctly the exchange of energy and water in cold climate cities at sites with varying surface cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flash floods pose a significant danger for life and property. Unfortunately, in arid and semiarid environment the runoff generation shows a complex non-linear behavior with a strong spatial and temporal non-uniformity. As a result, the predictions made by physically-based simulations in semiarid areas are subject to great uncertainty, and a failure in the predictive behavior of existing models is common. Thus better descriptions of physical processes at the watershed scale need to be incorporated into the hydrological model structures. For example, terrain relief has been systematically considered static in flood modelling at the watershed scale. Here, we show that the integrated effect of small distributed relief variations originated through concurrent hydrological processes within a storm event was significant on the watershed scale hydrograph. We model these observations by introducing dynamic formulations of two relief-related parameters at diverse scales: maximum depression storage, and roughness coefficient in channels. In the final (a posteriori) model structure these parameters are allowed to be both time-constant or time-varying. The case under study is a convective storm in a semiarid Mediterranean watershed with ephemeral channels and high agricultural pressures (the Rambla del Albujón watershed; 556 km 2 ), which showed a complex multi-peak response. First, to obtain quasi-sensible simulations in the (a priori) model with time-constant relief-related parameters, a spatially distributed parameterization was strictly required. Second, a generalized likelihood uncertainty estimation (GLUE) inference applied to the improved model structure, and conditioned to observed nested hydrographs, showed that accounting for dynamic relief-related parameters led to improved simulations. The discussion is finally broadened by considering the use of the calibrated model both to analyze the sensitivity of the watershed to storm motion and to attempt the flood forecasting of a stratiform event with highly different behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ERA-Interim/Land is a global land surface reanalysis data set covering the period 1979–2010. It describes the evolution of soil moisture, soil temperature and snowpack. ERA-Interim/Land is the result of a single 32-year simulation with the latest ECMWF (European Centre for Medium-Range Weather Forecasts) land surface model driven by meteorological forcing from the ERA-Interim atmospheric reanalysis and precipitation adjustments based on monthly GPCP v2.1 (Global Precipitation Climatology Project). The horizontal resolution is about 80 km and the time frequency is 3-hourly. ERA-Interim/Land includes a number of parameterization improvements in the land surface scheme with respect to the original ERA-Interim data set, which makes it more suitable for climate studies involving land water resources. The quality of ERA-Interim/Land is assessed by comparing with ground-based and remote sensing observations. In particular, estimates of soil moisture, snow depth, surface albedo, turbulent latent and sensible fluxes, and river discharges are verified against a large number of site measurements. ERA-Interim/Land provides a global integrated and coherent estimate of soil moisture and snow water equivalent, which can also be used for the initialization of numerical weather prediction and climate models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate estimates of how soil water stress affects plant transpiration are crucial for reliable land surface model (LSM) predictions. Current LSMs generally use a water stress factor, β, dependent on soil moisture content, θ, that ranges linearly between β = 1 for unstressed vegetation and β = 0 when wilting point is reached. This paper explores the feasibility of replacing the current approach with equations that use soil water potential as their independent variable, or with a set of equations that involve hydraulic and chemical signaling, thereby ensuring feedbacks between the entire soil–root–xylem–leaf system. A comparison with the original linear θ-based water stress parameterization, and with its improved curvi-linear version, was conducted. Assessment of model suitability was focused on their ability to simulate the correct (as derived from experimental data) curve shape of relative transpiration versus fraction of transpirable soil water. We used model sensitivity analyses under progressive soil drying conditions, employing two commonly used approaches to calculate water retention and hydraulic conductivity curves. Furthermore, for each of these hydraulic parameterizations we used two different parameter sets, for 3 soil texture types; a total of 12 soil hydraulic permutations. Results showed that the resulting transpiration reduction functions (TRFs) varied considerably among the models. The fact that soil hydraulic conductivity played a major role in the model that involved hydraulic and chemical signaling led to unrealistic values of β, and hence TRF, for many soil hydraulic parameter sets. However, this model is much better equipped to simulate the behavior of different plant species. Based on these findings, we only recommend implementation of this approach into LSMs if great care with choice of soil hydraulic parameters is taken