33 resultados para SUB AND SUPERSOLUTIONS
em CentAUR: Central Archive University of Reading - UK
Resumo:
The present research sought to investigate the role of the basal ganglia in timing of sub- and supra-second intervals via an examination of the ability of people with Parkinson's disease (PD) to make temporal judgments in two ranges, 100-500 ms, and 1-5 s. Eighteen nondemented medicated patients with PD were compared with 14 matched controls on a duration-bisection task in which participants were required to discriminate auditory and visual signal durations within each time range. Results showed that patients with PD exhibited more variable duration judgments across both signal modality and duration range than controls, although closer analyses confirmed a timing deficit in the longer duration range only. The findings presented here suggest the bisection procedure may be a useful tool in identifying timing impairments in PD and, more generally, reaffirm the hypothesised role of the basal ganglia in temporal perception at the level of the attentionally mediated internal clock as well as memory retrieval and/or decision-making processes. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
With the increasing frequency and magnitude of warmer days during the summer in the UK, bedding plants which were a traditional part of the urban green landscape are perceived as unsustainable and water-demanding. During recent summers when bans on irrigation have been imposed, use and sales of bedding plants have dropped dramatically having a negative financial impact on the nursery industry. Retaining bedding species as a feature in public and even private spaces in future may be conditional on them being managed in a manner that minimises their water use. Using Petunia x hybrida ‘Hurrah White’ we aimed to discover which irrigation approach was the most efficient for maintaining plants’ ornamental quality (flower numbers, size and longevity), shoot and root growth under water deficit and periods of complete water withdrawal. Plants were grown from plugs for 51 days in wooden rhizotrons (0.35 m (h) x 0.1 m (w) x 0.065 m (d)); the rhizotrons’ front comprised clear Perspex which enabled us to monitor root growth closely. Irrigation treatments were: 1. watering with the amount which constitutes 50% of container capacity by conventional surface drip-irrigation (‘50% TOP’); 2. 50% as sub-irrigation at 10 cm depth (‘50% SUB’); 3. ‘split’ irrigation: 25% as surface drip- and 25% as sub-irrigation at 15 cm depth (‘25/25 SPLIT’); 4. 25% as conventional surface drip-irrigation (‘25% TOP’). Plants were irrigated daily at 18:00 apart from days 34-36 (inclusive) when water was withdrawn for all the treatments. Plants in ‘50% SUB’ had the most flowers and their size was comparable to that of ‘50% TOP’. Differences between treatments in other ‘quality’ parameters (height, shoot number) were biologically small. There was less root growth at deeper soil surface levels for ‘50% TOP’ which indicated that irrigation methods like ‘50% SUB’ and ‘25/25 SPLIT’ and stronger water deficits encouraged deeper root growth. It is suggested that sub-irrigation at 10 cm depth with water amounts of 50% container capacity would result in the most root growth with the maximum flowering for Petunia. Leaf stomatal conductance appeared to be most sensitive to the changes in substrate moisture content in the deepest part of the soil profile, where most roots were situated.
Resumo:
We analyse the widely-used international/ Zürich sunspot number record, R, with a view to quantifying a suspected calibration discontinuity around 1945 (which has been termed the “Waldmeier discontinuity” [Svalgaard, 2011]). We compare R against the composite sunspot group data from the Royal Greenwich Observatory (RGO) network and the Solar Optical Observing Network (SOON), using both the number of sunspot groups, N{sub}G{\sub}, and the total area of the sunspots, A{sub}G{\sub}. In addition, we compare R with the recently developed interdiurnal variability geomagnetic indices IDV and IDV(1d). In all four cases, linearity of the relationship with R is not assumed and care is taken to ensure that the relationship of each with R is the same before and after the putative calibration change. It is shown the probability that a correction is not needed is of order 10{sup}−8{\sup} and that R is indeed too low before 1945. The optimum correction to R for values before 1945 is found to be 11.6%, 11.7%, 10.3% and 7.9% using A{sub}G{\sub}, N{sub)G{\sub}, IDV, and IDV(1d), respectively. The optimum value obtained by combining the sunspot group data is 11.6% with an uncertainty range 8.1-14.8% at the 2σ level. The geomagnetic indices provide an independent yet less stringent test but do give values that fall within the 2σ uncertainty band with optimum values are slightly lower than from the sunspot group data. The probability of the correction needed being as large as 20%, as advocated by Svalgaard [2011], is shown to be 1.6 × 10{sup}−5{\sup}.
Resumo:
We investigate the relationship between interdiurnal variation geomagnetic activity indices, IDV and IDV(1d), corrected sunspot number, R{sub}C{\sub}, and the group sunspot number R{sub}G{\sub}. R{sub}C{\sub} uses corrections for both the “Waldmeier discontinuity”, as derived in Paper 1 [Lockwood et al., 2014c], and the “Wolf discontinuity” revealed by Leussu et al. [2013]. We show that the simple correlation of the geomagnetic indices with R{sub}C{\sub}{sup}n{\sup} or R{sub}G{\sub}{sup}n{\sup} masks a considerable solar cycle variation. Using IDV(1d) or IDV to predict or evaluate the sunspot numbers, the errors are almost halved by allowing for the fact that the relationship varies over the solar cycle. The results indicate that differences between R{sub}C{\sub} and R{sub}G{\sub} have a variety of causes and are highly unlikely to be attributable to errors in either R{sub}G{\sub} alone, as has recently been assumed. Because it is not known if R{sub}C{\sub} or R{sub}G{\sub} is a better predictor of open flux emergence before 1874, a simple sunspot number composite is suggested which, like R{sub}G{\sub}, enables modelling of the open solar flux for 1610 onwards in Paper 3, but maintains the characteristics of R{sub}C{\sub}.
Resumo:
The influence of different moisture and aeration conditions on the degradation of atrazine and isoproturon was investigated in environmental samples aseptically collected from surface and sub-surface zones of agricultural land. The materials were maintained at two moisture contents corresponding to just above field capacity or 90% of field capacity. Another two groups of samples were adjusted with water to above field capacity, and, at zero time, exposed to drying-rewetting cycles. Atrazine was more persistent (t(1/2) = 22-3S days) than isoproturon (t(1/2) = 5-17 days) in samples maintained at constant moisture conditions. The rate of degradation for both herbicides was higher in samples maintained at a moisture content of 90% of field capacity than in samples with higher moisture contents. The reduction in moisture content in samples undergoing desiccation from above field capacity to much lower than field capacity enhanced the degradation of isoproturon (t(1/2) = 9-12 days) but reduced the rate of atrazine degradation (t(1/2) = 23-35-days). This demonstrates the variability between different micro-organisms in their susceptibility to desiccation. Under anaerobic conditions generated in anaerobic jars, atrazine degraded much more rapidly than isoproturon in materials taken from three soil profiles (0-250 cm depth). It is suggested that some specific micro-organisms are able to survive and degrade herbicide under severe conditions of desiccation. (C) 2004 Society of Chemical Industry.
Resumo:
Soil organic carbon (SOC) plays a vital role in ecosystem function, determining soil fertility, water holding capacity and susceptibility to land degradation. In addition, SOC is related to atmospheric CO, levels with soils having the potential for C release or sequestration, depending on land use, land management and climate. The United Nations Convention on Climate Change and its Kyoto Protocol, and other United Nations Conventions to Combat Desertification and on Biodiversity all recognize the importance of SOC and point to the need for quantification of SOC stocks and changes. An understanding of SOC stocks and changes at the national and regional scale is necessary to further our understanding of the global C cycle, to assess the responses of terrestrial ecosystems to climate change and to aid policy makers in making land use/management decisions. Several studies have considered SOC stocks at the plot scale, but these are site specific and of limited value in making inferences about larger areas. Some studies have used empirical methods to estimate SOC stocks and changes at the regional scale, but such studies are limited in their ability to project future changes, and most have been carried out using temperate data sets. The computational method outlined by the Intergovernmental Panel on Climate Change (IPCC) has been used to estimate SOC stock changes at the regional scale in several studies, including a recent study considering five contrasting eco regions. This 'one step' approach fails to account for the dynamic manner in which SOC changes are likely to occur following changes in land use and land management. A dynamic modelling approach allows estimates to be made in a manner that accounts for the underlying processes leading to SOC change. Ecosystem models, designed for site scale applications can be linked to spatial databases, giving spatially explicit results that allow geographic areas of change in SOC stocks to be identified. Some studies have used variations on this approach to estimate SOC stock changes at the sub-national and national scale for areas of the USA and Europe and at the watershed scale for areas of Mexico and Cuba. However, a need remained for a national and regional scale, spatially explicit system that is generically applicable and can be applied to as wide a range of soil types, climates and land uses as possible. The Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System was developed in response to this need. The GEFSOC system allows estimates of SOC stocks and changes to be made for diverse conditions, providing essential information for countries wishing to take part in an emerging C market, and bringing us closer to an understanding of the future role of soils in the global C cycle. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Artisanal and small-scale mining (ASM)-low tech, labour intensive mineral processing and excavation activity-is an economic mainstay in rural sub-Saharan Africa, providing direct employment to over two million people. This paper introduces a special issue on 'Small-scale mining, poverty and development in sub-Saharan Africa'. It focuses on the core conceptual issues covered in the literature, and the policy implications of the findings reported in the papers in this special issue. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This article critically examines the challenges that come with implementing the Extractive Industries Transparency Initiative (EITI)a policy mechanism marketed by donors and Western governments as a key to facilitating economic improvement in resource-rich developing countriesin sub-Saharan Africa. The forces behind the EITI contest that impoverished institutions, the embezzlement of petroleum and/or mineral revenues, and a lack of transparency are the chief reasons why resource-rich sub-Saharan Africa is underperforming economically, and that implementation of the EITI, with its foundation of good governance, will help address these problems. The position here, however, is that the task is by no means straightforward: that the EITI is not necessarily a blueprint for facilitating good governance in the region's resource-rich countries. It is concluded that the EITI is a policy mechanism that could prove to be effective with significant institutional change in host African countries but, on its own, it is incapable of reducing corruption and mobilizing citizens to hold government officials accountable for hoarding profits from extractive industry operations.
Resumo:
Recent studies of the current state of rural education and training (RET) systems in sub-Saharan Africa have assessed their ability to provide for the learning needs essential for more knowledgeable and productive small-scale rural households. These are most necessary if the endemic causes of rural poverty (poor nutrition, lack of sustainable livelihoods, etc.) are to be overcome. A brief historical background and analysis of the major current constraints to improvement in the sector are discussed. Paramount among those factors leading to its present 'malaise' is the lack of a whole-systems perspective and the absence of any coherent policy framework in most countries. There is evidence of some recent innovations, both in the public sector and through the work of non-governmental organisations (NGOs), civil society organisations (CSOs) and other private bodies. These provide hope of a new sense of direction that could lead towards meaningful 'revitalisation' of the sector. A suggested framework offers 10 key steps which, it is argued, could largely be achieved with modest internal resources and very little external support, provided that the necessary leadership and managerial capacities are in place. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To assess the effect of hyaluronidase on eye and eyelid movements when used as an adjunct in sub-Tenon's anaesthesia. Methods: A total of 60 patients who had sub-Tenon's anaesthesia prior to phacoemulsification surgery were divided into two equal groups in a double-masked randomised controlled fashion. Of these, Group A had 4 ml lignocaine 2%, while Group B had 4ml lignocaine 2% with the addition of sodium hyaluronidase 75 IU/ml. Ocular motility, levator, and orbicularis oculi function were measured in all patients at 5 and 8 min. Levator function was scored from 0 (no function) to 3 (complete function) while orbicularis function was scored from 0 to 2. The score for ocular motility was the sum in four positions of gaze, each position scoring from 0 to 2. Results were compared using a nonparametric test. Results Group B achieved significantly better ocular and lid akinesia than Group A both at 5 and 8 min with P < 0.01. The median scores for levator function at 5 and 8 min were 2 for Group A and 0 for Group B. For orbicularis function, the median scores at both time intervals were 2 for Group A and 1 for Group B. For ocular motility, the median score for Group A at 5 min was 3 and at 8 min was 2.5; for Group B at 5 min was 0.5 and at 8 min was 0. Conclusions: The addition of hyaluronidase in sub-Tenon's anaesthesia has a significant effect in improving ocular and lid (levator and orbicularis) akinesia.
Resumo:
This paper reports preliminary results of a reach and grasp study of robot mediated neurorehabilitation. These results are presented on a case-by-case basis and give a good indication of a positive effect of robot mediated therapy. The study investigated both reach and grasp assistance and although it is not possible to attribute the response to the benefits of providing assistance of both modalities the study is a good indicator that this strategy should be pursued. The paper also reports on the benefits of motivational queues such as exercise scores and on subject attitudes to the robot mediated therapy.
Resumo:
We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB) based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007). K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations. From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of similar to 10(-11) cm(2) s(-1) for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.
Resumo:
We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (carbon-carbon double bonds) can reach chemical lifetimes of many hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (< 10(-10) cm(2) s(-1)). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.
Resumo:
We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas–particle interactions (P¨oschl et al., 5 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface 10 concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory stud15 ies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical lifetimes of 20 multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (10−10 cm2 s−1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB 25 as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.