51 resultados para STRETCHING LIMITS

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates finite-stretching corrections to the classical Milner-Witten-Cates theory for semi-dilute polymer brushes in a good solvent. The dominant correction to the free energy originates from an entropic repulsion caused by the impenetrability of the grafting surface, which produces a depletion of segments extending a distance $\mu \propto L^{-1}$ from the substrate, where $L$ is the classical brush height. The next most important correction is associated with the translational entropy of the chain ends, which creates the well-known tail where a small population of chains extend beyond the classical brush height by a distance $\xi \propto L^{-1/3}$. The validity of these corrections is confirmed by quantitative comparison with numerical self-consistent field theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare laboratory observations of equilibrated baroclinic waves in the rotating two-layer annulus, with numerical simulations from a quasi-geostrophic model. The laboratory experiments lie well outside the quasi-geostrophic regime: the Rossby number reaches unity; the depth-to-width aspect ratio is large; and the fluid contains ageostrophic inertia–gravity waves. Despite being formally inapplicable, the quasi-geostrophic model captures the laboratory flows reasonably well. The model displays several systematic biases, which are consequences of its treatment of boundary layers and neglect of interfacial surface tension and which may be explained without invoking the dynamical effects of the moderate Rossby number, large aspect ratio or inertia–gravity waves. We conclude that quasi-geostrophic theory appears to continue to apply well outside its formal bounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The =CH2 AND =CD2 stretching vibrational overtones of H2C=CD2 have been studied up to V= 6 and V= 3, respectively. We report their interpretation in terms of a transition from normal to local modes, involving Fermi resonance with the C=C stretching and CH2 scissoring vibrations. We discuss the alternative representation of the vibrational Hamiltonian matrix in local mode and normal mode basis functions, and conclude that the normal mode basis offers greater flexibility in representing small anharmonic couplings with other modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reanalysis data provide an excellent test bed for impacts prediction systems. because they represent an upper limit on the skill of climate models. Indian groundnut (Arachis hypogaea L.) yields have been simulated using the General Large-Area Model (GLAM) for annual crops and the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA-40). The ability of ERA-40 to represent the Indian summer monsoon has been examined. The ability of GLAM. when driven with daily ERA-40 data, to model both observed yields and observed relationships between subseasonal weather and yield has been assessed. Mean yields "were simulated well across much of India. Correlations between observed and modeled yields, where these are significant. are comparable to correlations between observed yields and ERA-40 rainfall. Uncertainties due to the input planting window, crop duration, and weather data have been examined. A reduction in the root-mean-square error of simulated yields was achieved by applying bias correction techniques to the precipitation. The stability of the relationship between weather and yield over time has been examined. Weather-yield correlations vary on decadal time scales. and this has direct implications for the accuracy of yield simulations. Analysis of the skewness of both detrended yields and precipitation suggest that nonclimatic factors are partly responsible for this nonstationarity. Evidence from other studies, including data on cereal and pulse yields, indicates that this result is not particular to groundnut yield. The detection and modeling of nonstationary weather-yield relationships emerges from this study as an important part of the process of understanding and predicting the impacts of climate variability and change on crop yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current gas-based in vitro evaluation systems are extremely powerful research techniques. However they have the potential to generate a great deal more than simple fermentation dynamics. Details from four experiments are presented in which adaptation, and novel application, of an in vitro system allowed widely differing objectives to be examined. In the first two studies, complement methodologies were utilised. In such assays, an activity or outcome is inferred through the occurrence of a secondary event rather than by direct observation. Using an N-deficient incubation medium, the increase in starch fermentation, when supplemented with individual amino acids (i.e., known level of N) relative to that of urea (i.e., known quantity and N availability), provided an estimate of their microbial utilisation. Due to the low level of response observed with some arnino acids (notably methionine and lysine), it was concluded, that they may not need to be offered in a rumen-inert form to escape rumen microbial degradation. In another experiment, the extent to which degradation of plant cell wall components was inhibited by lipid supplementation was evaluated using fermentation gas release profiles of washed hay. The different responses due to lipid source and level of inclusion suggested that the degree of rumen protection required to ameliorate this depression was supplement dependent. That in vitro inocula differ in their microbial composition is of little interest per se, as long as the outcome is the same (i.e., that similar substrates are degraded at comparable rates and end-product release is equivalent). However where a microbial population is deficient in a particular activity, increasing the level of inoculation will have no benefit. Estimates of hydrolytic activity were obtained by examining fermentation kinetics of specific substrates. A number of studies identified a fundamental difference between rumen fluid and faecal inocula, with the latter having a lower fibrolytic activity, which could not be completely attributed to microbial numbers. The majority of forage maize is offered as an ensiled feed, however most of the information on which decisions such as choice of variety, crop management and harvesting date are made is based on fresh crop measurements. As such, an attempt was made to estimate ensiled maize quality from an in vitro analysis of the fresh crop. Fermentation profiles and chemical analysis confirmed changes in crop composition over the growing season, and loss of labile carbohydrates during ensiling. In addition, examination of degradation residues allowed metabolizable energy (ME) contents to be estimated. Due to difficulties associated with starch analysis, the observation that this parameter could be predicted by difference (together with an assumed degradability), allowed an estimate of ensiled maize ME to be developed from fresh material. In addition, the contribution of the main carbohydrates towards ME showed the importance of delaying harvest until maximum starch content has been achieved. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Primary bacterial endosymbionts of insects (p-endosymbionts) are thought to be undergoing the process of Muller's ratchet where they accrue slightly deleterious mutations due to genetic drift in small populations with negligible recombination rates. If this process were to go unchecked over time, theory predicts mutational meltdown and eventual extinction. Although genome degradation is common among p-endosymbionts, we do not observe widespread p-endosymbiont extinction, suggesting that Muller's ratchet may be slowed or even stopped over time. For example, selection may act to slow the effects of Muller's ratchet by removing slightly deleterious mutations before they go to fixation thereby causing a decrease in nucleotide substitutions rates in older p-endosymbiont lineages. Methodology/Principal Findings To determine whether selection is slowing the effects of Muller's ratchet, we determined the age of the Candidatus Riesia/sucking louse assemblage and analyzed the nucleotide substitution rates of several p-endosymbiont lineages that differ in the length of time that they have been associated with their insect hosts. We find that Riesia is the youngest p-endosymbiont known to date, and has been associated with its louse hosts for only 13–25 My. Further, it is the fastest evolving p-endosymbiont with substitution rates of 19–34% per 50 My. When comparing Riesia to other insect p-endosymbionts, we find that nucleotide substitution rates decrease dramatically as the age of endosymbiosis increases. Conclusions/Significance A decrease in nucleotide substitution rates over time suggests that selection may be limiting the effects of Muller's ratchet by removing individuals with the highest mutational loads and decreasing the rate at which new mutations become fixed. This countering effect of selection could slow the overall rate of endosymbiont extinction.