8 resultados para STELLAR ENERGIES

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical potential energy functions which are valid at all dissociation limits have been derived for the ground states of SO2 and O3. The procedure involves minimizing the errors between the observed vibrational spectra and spectra calculated by a variational procedure. Good agreement is obtained between the observed and calculated spectra for both molecules. Comparisons are made between anharmonic force fields, previously determined from the spectral data, and the force fields obtained by differentiating the derived analytical functions at the equilibrium configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report rigorous calculations of rovibrational energies and dipole transition intensities for three molecules using a new version of the code MULTIMODE. The key features of this code which permit, for the first time, such calculations for moderately sized but otherwise general polyatomic molecules are briefly described. Calculations for the triatomic molecule BF(2) are done to validate the code. New calculations for H(2)CO and H(2)CS are reported; these make use of semiempirical potentials but ab initio dipole moment surfaces. The new dipole surface for H(2)CO is a full-dimensional fit to the dipole moment obtained with the coupled-cluster with single and double excitations and a perturbative treatment of triple excitations method with the augmented correlation consistent triple zeta basis set. Detailed comparisons are made with experimental results from a fit to relative data for H(2)CS and absolute intensities from the HITRAN database for H(2)CO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rovibration partition function of CH4 was calculated in the temperature range of 100-1000 K using well-converged energy levels that were calculated by vibrational-rotational configuration interaction using the Watson Hamiltonian for total angular momenta J=0-50 and the MULTIMODE computer program. The configuration state functions are products of ground-state occupied and virtual modals obtained using the vibrational self-consistent field method. The Gilbert and Jordan potential energy surface was used for the calculations. The resulting partition function was used to test the harmonic oscillator approximation and the separable-rotation approximation. The harmonic oscillator, rigid-rotator approximation is in error by a factor of 2.3 at 300 K, but we also propose a separable-rotation approximation that is accurate within 2% from 100 to 1000 K. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report vibrational configuration interaction calculations of the monomer fundamentals of (H2O)(2), (D2O)(2), (H2O)(3), and (D2O)(3) using the code MULTIMODE and full dimensional ab initio-based global potential energies surfaces (PESs). For the dimer the HBB PES [Huang , J. Chem. Phys 128, 034312 (2008)] is used and for the trimer a new PES, reported here, is used. The salient properties of the new trimer PES are presented and compared to previous single-point calculations and the vibrational energies are compared with experiments. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report variational calculations of rovibrational energies of CH4 using the code MULTIMODE and an ab initio force field of Schwenke and Partridge. The systematic convergence of the energies with respect to the level of mode coupling is presented. Converged vibrational energies calculated using the five-mode representation of the potential for zero total angular momentum are compared with previous, benchmark calculations based on Radau coordinates using this force field for zero total angular momentum and for J = 1. Very good agreement with the previous benchmark calculations is found. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present N-body simulations of accretion discs about young stellar objects (YSOs). The simulation includes the presence of a magnetic loop structure on the central star which interacts with the particles by means of a magnetic drag force. We find that an equilibrium spin rate is achieved when the corotation radius coincides with the edge of the loop. This spin rate is consistent with observed values for TTauri stars, being an order of magnitude less than the breakup value. The material ejected from the system by the rotating loop has properties consistent with the observed molecular outflows, given the presence of a suitable containing cavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map.