6 resultados para SPERM
em CentAUR: Central Archive University of Reading - UK
Resumo:
Summary Understanding the factors influencing variation in the degree of sperm competition is a key question underlying the mechanisms driving sexual conflict. Previous behavioural and comparative studies have indicated that carnivores appear to have evolved under sperm competition but an analysis of the predictors of the level of sperm competition is missing. In this study, we use phylogenetic comparative methods to investigate life-history parameters predicted to affect the degree of sperm competition in terrestrial carnivores using variation in relative testes size (RTS, after controlling for body size allometry) as a measure of the level of sperm competition. Due to a paucity of consistent data across taxa, we used three measures of RTS: testes mass (n = 40 species), testes and epididymes mass combined (n = 38), and testes volume (n = 48). We also created a derived data set (n = 79) with testes mass estimated from regression analyses on the other measures of testes size. Carnivores with shorter mating seasons had relatively larger testes, consistent with the hypothesis that sperm competition is greater when the degree of female oestrous synchrony is high. This relationship was stronger in spontaneous versus induced ovulators, suggesting higher sperm competition levels in spontaneous ovulators. This is the first comparative study to show this within mammalian taxa. Neither social mating system nor reproductive lifespan were significantly associated with variation in RTS and hence are poor predictors of sperm competition levels. None of the above relationships were found to be significant for the testes and epididymes mass combined data set, but our understanding of the role of the epididymis in sperm competition is too limited to draw any conclusions. Finally, we consistently found a significant phylogenetic signal in all analyses, indicating that phylogeny has played a significant role in the evolution of carnivore testes size and, therefore, in shaping levels of sperm competition. Our results shed new light into the factors affecting levels of sperm competition in terrestrial carnivores by showing that the degree of oestrous synchrony and ovulation type interact to predict variation in RTS.
Resumo:
To further elucidate the role of proteases capable of cleaving N-terminal proopiomelanocortin (N-POMC)-derived peptides, we have cloned two cDNAs encoding isoforms of the airway trypsin-like protease (AT) from mouse (MAT) and rat ( RAT), respectively. The open reading frames comprise 417 amino acids (aa) and 279 aa. The mouse AT gene was located at chromosome 5E1 and contains 10 exons. The longer isoform, which we designated MAT1 and RAT1, has a simple type II transmembrane protein structure, consisting of a short cytoplasmic domain, a transmembrane domain, a SEA (63-kDa sea urchin sperm protein, enteropeptidase, agrin) module, and a serine protease domain. The human homolog of MAT1 and RAT1 is the human AT ( HAT). The shorter isoform, designated MAT2 and RAT2, which contains an alternative N terminus, was formerly described in the rat as adrenal secretory serine protease (AsP) and has been shown to be involved in the processing of N-POMC-derived peptides. In contrast to the long isoform, neither MAT2 and RAT2 ( AsP) contain a transmembrane domain nor a SEA domain but an N-terminal signal peptide to direct the enzyme to the secretory pathway. The C terminus, covering the catalytic triad, is identical in both isoforms. Immunohistochemically, MAT/RAT was predominantly expressed in tissues of the upper gastrointestinal and the respiratory tract - but also in the adrenal gland. Moreover, isoform-specific RT-PCR and quantitative PCR analysis revealed a complex expression pattern of the two isoforms with differences between mice and rats. These findings indicate a multifunctional role of these proteases beyond adrenal proliferation.
Resumo:
Importance of biomarker discovery in men’s cancer diagnosis and prognosis Each year around 10,000 men in the UK die as a result of prostate cancer (PCa) making it the 3rd most common cancer behind lung and breast cancer; worldwide more than 670,000 men are diagnosed every year with the disease [1]. Current methods of diagnosis of PCa mainly rely on the detection of elevated prostate-specific antigen (PSA) levels in serum and/or physical examination by a doctor for the detection of an abnormal prostate. PSA is a glycoprotein produced almost exclusively by the epithelial cells of the prostate gland [2]. Its role is not fully understood, although it is known that it forms part of the ejaculate and its function is to solubilise the sperm to give them the mobility to swim. Raised PSA levels in serum are thought to be due to both an increased production of PSA from the proliferated prostate cells, and a diminished architecture of affected cells, allowing an easier distribution of PSA into the wider circulatory system.
Resumo:
We describe a polymerase chain reaction which amplifies part of the Eco RI repeat unit of the fowl W chromosome. The resulting 447 bp fragment enables DNA from female birds to be identified. The composition of this DNA is confirmed by a nested polymerase chain reaction which specifically amplifies a known internal 263 bp region in this fragment. Using this technique it is possible to follow the fate of female cells in male germline chimaeras. The polymerase chain reaction fragment can be traced in cells of the embryonic and hatchling gonad and in adult sperm implying that cells containing the W chromosome are capable of being processed through the avian testis.
Resumo:
There are few other areas in family law where incongruence between the legal and social positions is as evident as that concerning parenthood. Recent cases involving lesbian couples and known sperm donors serve to highlight the increasing tension between the respective roles of biology, intention and functional parenting in the attribution of legal parental status. As both legislative and case-law developments have shown, intention is central in some circumstances, but not in others. The main claim of this paper is that this ad hoc approach leads to incoherent and unsatisfactory law: instead of striving to identify a status, what we are really looking to do is to identify the people who assume responsibility for a child. Drawing upon recent case-law, this paper explores how a conceptual reform of the law could result in a principled framework which would place formally recognised intention at the heart of parental status in order to reconnect legal duty with social reality for as many children and parents as possible. Moreover, it would ensure that parental status would not be dictated by the mode of conception of the child (natural or assisted). The analysis identifies the objectives of reform before proposing a new model which, while recognising the social importance of the biological parentage link, would reserve legal status for functional parenthood.
Resumo:
Life-history traits vary substantially across species, and have been demonstrated to affect substitution rates. We compute genomewide, branch-specific estimates of male mutation bias (the ratio of male-to-female mutation rates) across 32 mammalian genomes and study how these vary with life-history traits (generation time, metabolic rate, and sperm competition). We also investigate the influence of life-history traits on substitution rates at unconstrained sites across a wide phylogenetic range. We observe that increased generation time is the strongest predictor of variation in both substitution rates (for which it is a negative predictor) and male mutation bias (for which it is a positive predictor). Although less significant, we also observe that estimates of metabolic rate, reflecting replication-independent DNA damage and repair mechanisms, correlate negatively with autosomal substitution rates, and positively with male mutation bias. Finally, in contrast to expectations, we find no significant correlation between sperm competition and either autosomal substitution rates or male mutation bias. Our results support the important but frequently opposite effects of some, but not all, life history traits on substitution rates. KEY WORDS: Generation time, genome evolution, metabolic rate, sperm competition.