48 resultados para SPECTRAL-ANALYSIS
em CentAUR: Central Archive University of Reading - UK
Resumo:
We study the elliptic sine-Gordon equation in the quarter plane using a spectral transform approach. We determine the Riemann-Hilbert problem associated with well-posed boundary value problems in this domain and use it to derive a formal representation of the solution. Our analysis is based on a generalization of the usual inverse scattering transform recently introduced by Fokas for studying linear elliptic problems.
Resumo:
The identification of lipophilic flavones and flavonols using a combination of high performance liquid chromatography, thin layer chromatography and UV spectral analysis is discussed. Data are provided for the flavones, apigenin, luteolin and tricetin and twelve of their methyl ethers, 8-hydroxyluteolin, 6-hydroxyluteolin and scutellarein and fourteen of their methyl ethers, and some 6,8-dihydroxyapigenin and 6,8-dihydroxyluteolin derivatives. Data for some forty two flavonols with extra 6- and/or 8-hydroxylation, mostly 6-hydroxykaempferol and quercetagetin derivatives, are also presented. The remaining compounds analysed include fourteen 5-deoxyflavones, four 5-methoxyflavones and five 5-deoxyflavonols plus further 5-hydroxylated flavones and flavonols without B-ring oxidation or with 2-, 5- or 6-hydroxylation. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
In this paper we consider one-dimensional diffusions with constant coefficients in a finite interval with jump boundary and a certain deterministic jump distribution. We use coupling methods in order to identify the spectral gap in the case of a large drift and prove that there is a threshold drift above which the bottom of the spectrum no longer depends on the drift. As a corollary to our result we are able to answer two questions concerning elliptic eigenvalue problems with non-local boundary conditions formulated previously by Iddo Ben-Ari and Ross Pinsky.
Resumo:
We study spectral properties of the Laplace-Beltrami operator on two relevant almost-Riemannian manifolds, namely the Grushin structures on the cylinder and on the sphere. This operator contains first order diverging terms caused by the divergence of the volume. We get explicit descriptions of the spectrum and the eigenfunctions. In particular in both cases we get a Weyl's law with leading term Elog E. We then study the drastic effect of Aharonov-Bohm magnetic potentials on the spectral properties. Other generalised Riemannian structures including conic and anti-conic type manifolds are also studied. In this case, the Aharonov-Bohm magnetic potential may affect the self-adjointness of the Laplace-Beltrami operator.
Resumo:
Wavenumber-frequency spectral analysis and linear wave theory are combined in a novel method to quantitatively estimate equatorial wave activity in the tropical lower stratosphere. The method requires temperature and velocity observations that are regularly spaced in latitude, longitude and time; it is therefore applied to the ECMWF 15-year re-analysis dataset (ERA-15). Signals consistent with idealized Kelvin and Rossby-gravity waves are found at wavenumbers and frequencies in agreement with previous studies. When averaged over 1981-93, the Kelvin wave explains approximately 1 K-2 of temperature variance on the equator at 100 hPa, while the Rossby-gravity wave explains approximately 1 m(2)s(-2) of meridional wind variance. Some inertio-gravity wave and equatorial Rossby wave signals are also found; however the resolution of ERA-15 is not sufficient for the method to provide an accurate climatology of waves with high meridional structure.
Resumo:
We consider boundary value problems for the N-wave interaction equations in one and two space dimensions, posed for x [greater-or-equal, slanted] 0 and x,y [greater-or-equal, slanted] 0, respectively. Following the recent work of Fokas, we develop an inverse scattering formalism to solve these problems by considering the simultaneous spectral analysis of the two ordinary differential equations in the associated Lax pair. The solution of the boundary value problems is obtained through the solution of a local Riemann–Hilbert problem in the one-dimensional case, and a nonlocal Riemann–Hilbert problem in the two-dimensional case.
Resumo:
An aquaplanet model is used to study the nature of the highly persistent low-frequency waves that have been observed in models forced by zonally symmetric boundary conditions. Using the Hayashi spectral analysis of the extratropical waves, the authors find that a quasi-stationary wave 5 belongs to a wave packet obeying a well-defined dispersion relation with eastward group velocity. The components of the dispersion relation with k ≥ 5 baroclinically convert eddy available potential energy into eddy kinetic energy, whereas those with k < 5 are baroclinically neutral. In agreement with Green’s model of baroclinic instability, wave 5 is weakly unstable, and the inverse energy cascade, which had been previously proposed as a main forcing for this type of wave, only acts as a positive feedback on its predominantly baroclinic energetics. The quasi-stationary wave is reinforced by a phase lock to an analogous pattern in the tropical convection, which provides further amplification to the wave. It is also found that the Pedlosky bounds on the phase speed of unstable waves provide guidance in explaining the latitudinal structure of the energy conversion, which is shown to be more enhanced where the zonal westerly surface wind is weaker. The wave’s energy is then trapped in the waveguide created by the upper tropospheric jet stream. In agreement with Green’s theory, as the equator-to-pole SST difference is reduced, the stationary marginally stable component shifts toward higher wavenumbers, while wave 5 becomes neutral and westward propagating. Some properties of the aquaplanet quasi-stationary waves are found to be in interesting agreement with a low frequency wave observed by Salby during December–February in the Southern Hemisphere so that this perspective on low frequency variability, apart from its value in terms of basic geophysical fluid dynamics, might be of specific interest for studying the earth’s atmosphere.
Resumo:
Texture and small-scale surface details are widely recognised as playing an important role in the haptic identification of objects. In order to simulate realistic textures in haptic virtual environments, it has become increasingly necessary to identify a robust technique for modelling of surface profiles. This paper describes a method whereby Fourier series spectral analysis is employed in order to describe the measured surface profiles of several characteristic surfaces. The results presented suggest that a bandlimited Fourier series can be used to provide a realistic approximation to surface amplitude profiles.
Resumo:
Cosmic rays modify current flow in the global atmospheric electrical circuit. Charging at horizontal layer cloud edges has been observed to be consistent with global circuit vertical current flow through the cloud, which can modify the properties of small and pure water droplets. Studies have been hampered by the absence of cloud edge observations, hence cloud base height information is investigated here. Cloud base height measured at the Lerwick Observatory, Shetland, UK, is analysed using threshold tests and spectral analysis. The cloud base height distributions for low cloud (cloud base less than 800 m) are found to vary with cosmic ray conditions. Further, 27 day and 1.68 year periodicities characteristic of cosmic ray variations are present, weakly, in the cloud base height data of stratiform clouds, when such periodicities are present in neutron monitor cosmic ray data. These features support the idea of propagation of heliospheric variability into layer clouds, through the global atmospheric electric circuit.
Resumo:
Serine proteinases like thrombin can signal to cells by the cleavage/activation of proteinase-activated receptors (PARs). Although thrombin is a recognized physiological activator of PAR(1) and PAR(4), the endogenous enzymes responsible for activating PAR(2) in settings other than the gastrointestinal system, where trypsin can activate PAR(2), are unknown. We tested the hypothesis that the human tissue kallikrein (hK) family of proteinases regulates PAR signaling by using the following: 1) a high pressure liquid chromatography (HPLC)-mass spectral analysis of the cleavage products yielded upon incubation of hK5, -6, and -14 with synthetic PAR N-terminal peptide sequences representing the cleavage/activation motifs of PAR(1), PAR(2), and PAR(4); 2) PAR-dependent calcium signaling responses in cells expressing PAR(1), PAR(2), and PAR(4) and in human platelets; 3) a vascular ring vasorelaxation assay; and 4) a PAR(4)-dependent rat and human platelet aggregation assay. We found that hK5, -6, and -14 all yielded PAR peptide cleavage sequences consistent with either receptor activation or inactivation/disarming. Furthermore, hK14 was able to activate PAR(1), PAR(2), and PAR(4) and to disarm/inhibit PAR(1). Although hK5 and -6 were also able to activate PAR(2), they failed to cause PAR(4)-dependent aggregation of rat and human platelets, although hK14 did. Furthermore, the relative potencies and maximum effects of hK14 and -6 to activate PAR(2)-mediated calcium signaling differed. Our data indicate that in physiological settings, hKs may represent important endogenous regulators of the PARs and that different hKs can have differential actions on PAR(1), PAR(2), and PAR(4).
Resumo:
Sub-seasonal variability including equatorial waves significantly influence the dehydration and transport processes in the tropical tropopause layer (TTL). This study investigates the wave activity in the TTL in 7 reanalysis data sets (RAs; NCEP1, NCEP2, ERA40, ERA-Interim, JRA25, MERRA, and CFSR) and 4 chemistry climate models (CCMs; CCSRNIES, CMAM, MRI, and WACCM) using the zonal wave number-frequency spectral analysis method with equatorially symmetric-antisymmetric decomposition. Analyses are made for temperature and horizontal winds at 100 hPa in the RAs and CCMs and for outgoing longwave radiation (OLR), which is a proxy for convective activity that generates tropopause-level disturbances, in satellite data and the CCMs. Particular focus is placed on equatorial Kelvin waves, mixed Rossby-gravity (MRG) waves, and the Madden-Julian Oscillation (MJO). The wave activity is defined as the variance, i.e., the power spectral density integrated in a particular zonal wave number-frequency region. It is found that the TTL wave activities show significant difference among the RAs, ranging from ∼0.7 (for NCEP1 and NCEP2) to ∼1.4 (for ERA-Interim, MERRA, and CFSR) with respect to the averages from the RAs. The TTL activities in the CCMs lie generally within the range of those in the RAs, with a few exceptions. However, the spectral features in OLR for all the CCMs are very different from those in the observations, and the OLR wave activities are too low for CCSRNIES, CMAM, and MRI. It is concluded that the broad range of wave activity found in the different RAs decreases our confidence in their validity and in particular their value for validation of CCM performance in the TTL, thereby limiting our quantitative understanding of the dehydration and transport processes in the TTL.
Resumo:
Increasing evidence demonstrates that beta-amyloid (Ab) is toxic to synapses, resulting in the progressive dismantling of neuronal circuits. Counteract the synaptotoxic effects of Ab could be particularly relevant for providing effective treatments for Alzheimer’s disease (AD). Curcumin was recently reported to improve learning and memory in animal models of AD. Little is currently known about the specific mechanisms by which Ab affects neuronal excitability and curcumin ameliorates synaptic transmission in the hippocampus. Organotypic hippocampal slice cultures exposed to Ab1–42 were used to study the neuroprotective effects of curcumin through a spectral analysis of multi-electrode array (MEA) recordings of spontaneous neuronal activity. Curcumin counteracted both deleterious effects of Ab; the initial synaptic dysfunction and the later neuronal death. The analysis of MEA recordings of spontaneous neuronal activity showed an attenuation of signal propagation induced by Ab before cell death and curcumin-induced alterations to local field potential (LFP) phase coherence. Curcumin-mediated attenuation of Ab-induced synaptic dysfunction involved regulation of synaptic proteins, namely phospho-CaMKII and phosphosynapsin I. Taken together, our results expand the neuroprotective role of curcumin to a synaptic level. The identification of these mechanisms underlying the effects of curcumin may lead to new targets for future therapies for AD.
Resumo:
Considerable effort is presently being devoted to producing high-resolution sea surface temperature (SST) analyses with a goal of spatial grid resolutions as low as 1 km. Because grid resolution is not the same as feature resolution, a method is needed to objectively determine the resolution capability and accuracy of SST analysis products. Ocean model SST fields are used in this study as simulated “true” SST data and subsampled based on actual infrared and microwave satellite data coverage. The subsampled data are used to simulate sampling errors due to missing data. Two different SST analyses are considered and run using both the full and the subsampled model SST fields, with and without additional noise. The results are compared as a function of spatial scales of variability using wavenumber auto- and cross-spectral analysis. The spectral variance at high wavenumbers (smallest wavelengths) is shown to be attenuated relative to the true SST because of smoothing that is inherent to both analysis procedures. Comparisons of the two analyses (both having grid sizes of roughly ) show important differences. One analysis tends to reproduce small-scale features more accurately when the high-resolution data coverage is good but produces more spurious small-scale noise when the high-resolution data coverage is poor. Analysis procedures can thus generate small-scale features with and without data, but the small-scale features in an SST analysis may be just noise when high-resolution data are sparse. Users must therefore be skeptical of high-resolution SST products, especially in regions where high-resolution (~5 km) infrared satellite data are limited because of cloud cover.
Resumo:
In this paper we develop and apply methods for the spectral analysis of non-selfadjoint tridiagonal infinite and finite random matrices, and for the spectral analysis of analogous deterministic matrices which are pseudo-ergodic in the sense of E. B. Davies (Commun. Math. Phys. 216 (2001), 687–704). As a major application to illustrate our methods we focus on the “hopping sign model” introduced by J. Feinberg and A. Zee (Phys. Rev. E 59 (1999), 6433–6443), in which the main objects of study are random tridiagonal matrices which have zeros on the main diagonal and random ±1’s as the other entries. We explore the relationship between spectral sets in the finite and infinite matrix cases, and between the semi-infinite and bi-infinite matrix cases, for example showing that the numerical range and p-norm ε - pseudospectra (ε > 0, p ∈ [1,∞] ) of the random finite matrices converge almost surely to their infinite matrix counterparts, and that the finite matrix spectra are contained in the infinite matrix spectrum Σ. We also propose a sequence of inclusion sets for Σ which we show is convergent to Σ, with the nth element of the sequence computable by calculating smallest singular values of (large numbers of) n×n matrices. We propose similar convergent approximations for the 2-norm ε -pseudospectra of the infinite random matrices, these approximations sandwiching the infinite matrix pseudospectra from above and below.