63 resultados para SPECIES RICHNESS
em CentAUR: Central Archive University of Reading - UK
Resumo:
Pesticides are an important potential cause of biodiversity and pollinator decline. Little is known about the impacts of pesticides on wild pollinators in the field. Insect pollinators were sampled in an agricultural system in Italy with the aim of detecting the impacts of pesticide use. The insecticide fenitrothion was over 150 times greater in toxicity than other pesticides used in the area, so sampling was set up around its application. Species richness of wild bees, bumblebees and butterflies were sampled at three spatial scales to assess responses to pesticide application: (i) the ‘field’ scale along pesticide drift gradients; (ii) the ‘landscape’ scale sampling in different crops within the area and (iii) the ‘regional’ scale comparing two river basins with contrasting agricultural intensity. At the field scale, the interaction between the application regime of the insecticide and the point in the season was important for species richness. Wild bee species richness appeared to be unaffected by one insecticide application, but declined after two and three applications. At the landscape scale, the species richness of wild bees declined in vine fields where the insecticide was applied, but did not decline in maize or uncultivated fields. At the regional scale, lower bumblebee and butterfly species richness was found in the more intensively farmed basin with higher pesticide loads. Our results suggest that wild bees are an insect pollinator group at particular risk from pesticide use. Further investigation is needed on how the type, quantity and timing of pesticide application impacts pollinators.
Resumo:
The arthropod species richness of pastures in three Azorean islands was used to examine the relationship between local and regional species richness over two years. Two groups of arthropods, spiders and sucking insects, representing two functionally different but common groups of pasture invertebrates were investigated. The local-regional species richness relationship was assessed over relatively fine scales: quadrats (= local scale) and within pastures (= regional scale). Mean plot species richness was used as a measure of local species richness (= alpha diversity) and regional species richness was estimated at the pasture level (= gamma diversity) with the 'first-order-Jackknife' estimator. Three related issues were addressed: (i) the role of estimated regional species richness and variables operating at the local scale (vegetation structure and diversity) in determining local species richness; (ii) quantification of the relative contributions of alpha and beta diversity to regional diversity using additive partitioning; and (iii) the occurrence of consistent patterns in different years by analysing independently between-year data. Species assemblages of spiders were saturated at the local scale (similar local species richness and increasing beta-diversity in richer regions) and were more dependent on vegetational structure than regional species richness. Sucking insect herbivores, by contrast, exhibited a linear relationship between local and regional species richness, consistent with the proportional sampling model. The patterns were consistent between years. These results imply that for spiders local processes are important, with assemblages in a particular patch being constrained by habitat structure. In contrast, for sucking insects, local processes may be insignificant in structuring communities.
Resumo:
The decline of bees has raised concerns regarding their conservation and the maintenance of ecosystem services they provide to bee-pollinated wild flowers and crops. Although the Mediterranean region is a hotspot for bee species richness, their status remains poorly studied. There is an urgent need for cost-effective, reliable, and unbiased sampling methods that give good bee species richness estimates. This study aims: (a) to assess bee species richness in two common Mediterranean habitat types: semi-natural scrub (phrygana) and managed olive groves; (b) to compare species richness in those systems to that of other biogeographic regions, and (c) to assess whether six different sampling methods (pan traps, variable and standardized transect walks, observation plots and trap nests), previously tested in other European biogeographic regions, are suitable in Mediterranean communities. Eight study sites, four per habitat type, were selected on the island of Lesvos, Greece. The species richness observed was high compared to other habitat types worldwide for which comparable data exist. Pan traps collected the highest proportion of the total bee species richness across all methods at the scale of a study site. Variable and standardized transect walks detected the highest total richness over all eight study sites. Trap nests and observation plots detected only a limited fraction of the bee species richness. To assess the total bee species richness in bee diversity hotspots, such as the studied habitats, we suggest a combination of transect walks conducted by trained bee collectors and pan trap sampling
Resumo:
Concern about biodiversity loss has led to increased public investment in conservation. Whereas there is a widespread perception that such initiatives have been unsuccessful, there are few quantitative tests of this perception. Here, we evaluate whether rates of biodiversity change have altered in recent decades in three European countries (Great Britain, Netherlands and Belgium) for plants and flower visiting insects. We compared four 20-year periods, comparing periods of rapid land-use intensification and natural habitat loss (1930–1990) with a period of increased conservation investment (post-1990). We found that extensive species richness loss and biotic homogenisation occurred before 1990, whereas these negative trends became substantially less accentuated during recent decades, being partially reversed for certain taxa (e.g. bees in Great Britain and Netherlands). These results highlight the potential to maintain or even restore current species assemblages (which despite past extinctions are still of great conservation value), at least in regions where large-scale land-use intensification and natural habitat loss has ceased.
Resumo:
Namibia has high levels of invertebrate endemism, but biodiversity research has been geographically and taxonomically limited. In South African savannah, species richness of ground-foraging ant assemblages is regulated by dominant ant species, but this pattern has not been tested in other arid environments. In this study, we provide a description of ant diversity at baits in three different Namibian habitats (savannah, saltpan and desert), and we test the relationship between ant dominance and richness for ground-foraging and arboreal species. Forty-two ant species were collected in this study, with species richness being highest in the saltpan, followed by savannah and then desert. Ant assemblages were most similar between the savannah and desert, due to shared arboreal species. Similarity between savannah and saltpan ant assemblages was due to an overlap in ground-foraging species. Ground ants were more diverse than arboreal ants, and several species were observed at baits for both strata, although the degree of overlap varied with habitat type. The dominance-richness relationship varied depending on habitat and sampling strata. We found a unimodal relationship in the saltpan, but not in the savannah. For ground ants the relationship was logarithmic, with increasing abundance of dominants leading to decreasing overall species richness. However, no trend was observed for the arboreal ant assemblage. In the desert, low ant abundance meant that we were unable to assign species dominance, possibly due to reduced foraging activity caused by high temperatures. The lack of a consistent dominance-richness trend across assemblages may be the result of varying degrees of environmental stress or competition. Our study is a preliminary description of diversity and dominance in Namibia, and we hope it stimulates further research on ant assemblages in arid regions of Africa.
Resumo:
1. Determining the functional significance of species diversity in natural enemy assemblages is a key step towards prediction of the likely impact of biodiversity loss on natural pest control processes. While the biological control literature contains examples in which increased natural enemy diversity hinders pest control, other studies have highlighted mechanisms where pest suppression is promoted by increased enemy diversity. 2. This study aimed to test whether increased predator species diversity results in higher rates of predation on two key, but contrasting, insect pest species commonly found in the rice ecosystems of south-east Asia. 3. Glasshouse experiments were undertaken in which four life stages of a planthopper (Nilaparvata lugens) and a moth (Marasmia patnalis) were caged with single or three-species combinations of generalist predators. 4. Generally, predation rates of the three-species assemblages exceeded expectation when attacking M. patnalis, but not when attacking N. lugens. In addition, a positive effect of increased predator species richness on overall predation rate was found with M. patnalis but not with N. lugens. 5. The results are consistent with theoretical predictions that morphological and behavioural differentiation among prey life stages promotes functional complementarity among predator species. This indicates that emergent species diversity effects in natural enemy assemblages are context dependent; they depend not only on the characteristics of the predators species, but on the identity of the species on which they prey.
Resumo:
The influence of sedimentation, depth and substratum angle on sponge assemblages in the Wakatobi region, south-eastern Sulawesi, Indonesia was considered. Sponge assemblages were sampled from two reef localities. The first reef (Sampela) was highly impacted by high sedimentation rates with fine sediment particles that settle slowly, while the second (Hoga) experienced only fast settling coarse sediment with lower overall sedimentation rates. Sponge assemblages were sampled (area occupied and numbers) on the reef fiat (0 m) and at 5 (reef crest), 10 and 15 m (15 m at Hoga only). Some significant (P < 0.001) differences were observed in the area occupied and the number of sponge patches between surface angles and sites. Significantly lower (t > 4.61, df = 9, P < 0.001) sponge numbers, percentage cover and richness were associated with the reef flat at both sites compared with all other depths at each site, with the exception of abundance of sponges on the reef flat at Sampela, which was much greater than at any other depth sampled. Species richness increased with depth at both sites but differences between surface angles were only recorded at Sampela, with higher species richness being found on vertical, inclined and horizontal surfaces respectively A total of 100 sponge species (total area sampled 52.5 m(2)) was reported from the two sites, with 58 species found at Sampela and 71 species at Hoga (41% of species shared). Multi-dimensional scaling (MDS) indicated differences in assemblage structure between sites and most depth intervals, but not substratum angles. A number of biological (e.g. competition and predation) and physical (e.g. sedimentation and aerial exposure) factors were considered to control sponge abundance and richness. Unexpectedly a significant (F-1,F-169 = 148.98, P < 0.001) positive linear relationship was found between sponge density and area occupied. In areas of high sponge coverage, the number of patches was also high, possibly due to fragmentation of large sponges produced as a result of predation and physical disturbance. The MDS results were also the same whether sponge numbers or percentage cover estimates were used, suggesting that although these different approaches yield different sorts of information, the same assemblage structure can be identified.
Resumo:
Re-establishing nutrient-cycling is often a key goal of mine-site restoration. This goal can be achieved by applying fertilisers (particularly P) in combination with seeding N-fixing legumes. However, the effect of this strategy on other key restoration goals such as the establishment and growth of non-leguminous species has received little attention. We investigated the effects of P-application rates either singly, or in combination with seeding seven large understorey legume species, on jarrah forest restoration after bauxite mining. Five years after P application and seeding, legume species richness, density and cover were higher in the legume-seeded treatment. However, the increased establishment of legumes did not lead to increased soil N. Increasing P-application rates from 0 to 80 kg P ha−1 did not affect legume species richness, but significantly reduced legume density and increased legume cover: cover was maximal (∼50%) where 80 kg P ha−1 had been applied with large legume seeds. Increasing P-application had no effect on species richness of non-legume species, but increased the density of weeds and native ephemerals. Cover of non-legume species decreased with increasing P-application rates and was lower in plots where large legumes had been seeded compared with non-seeded plots. There was a significant legume × P interaction on weed and ephemeral density: at 80 kg P ha−1 the decline in density of these groups was greatest where legumes were seeded. In addition, the decline in cover for non-legume species with increasing P was greatest when legumes were seeded. Applying 20 kg P ha−1 significantly increased tree growth compared with tree growth in unfertilised plots, but growth was not increased further at 80 kg ha−1 and tree growth was not affected by seeding large legumes. Taken together, these data indicate that 80 kg ha−1 P-fertiliser in combination with (seeding) large legumes maximised vegetation cover at five years but could be suboptimal for re-establishing a jarrah forest community that, like unmined forest, contains a diverse community of slow-growing re-sprouter species. The species richness and cover of non-legume understorey species, especially the resprouters, was highest in plots that received either 0 or 20 kg ha−1 P and where large legumes had not been seeded. Therefore, our findings suggest that moderation of P-fertiliser and legumes could be the best strategy to fulfil the multiple restoration goals of establishing vegetation cover, while at the same time maximising tree growth and species richness of restored forest.
Resumo:
Restoration and maintenance of habitat diversity have been suggested as conservation priorities in farmed landscapes, but how this should be achieved and at what scale are unclear. This study makes a novel comparison of the effectiveness of three wildlife-friendly farming schemes for supporting local habitat diversity and species richness on 12 farms in England. The schemes were: (i) Conservation Grade (Conservation Grade: a prescriptive, non-organic, biodiversity-focused scheme), (ii) organic agriculture and (iii) a baseline of Entry Level Stewardship (Entry Level Stewardship: a flexible widespread government scheme). Conservation Grade farms supported a quarter higher habitat diversity at the 100-m radius scale compared to Entry Level Stewardship farms. Conservation Grade and organic farms both supported a fifth higher habitat diversity at the 250-m radius scale compared to Entry Level Stewardship farms. Habitat diversity at the 100-m and 250-m scales significantly predicted species richness of butterflies and plants. Habitat diversity at the 100-m scale also significantly predicted species richness of birds in winter and solitary bees. There were no significant relationships between habitat diversity and species richness for bumblebees or birds in summer. Butterfly species richness was significantly higher on organic farms (50% higher) and marginally higher on Conservation Grade farms (20% higher), compared with farms in Entry Level Stewardship. Organic farms supported significantly more plant species than Entry Level Stewardship farms (70% higher) but Conservation Grade farms did not (10% higher). There were no significant differences between the three schemes for species richness of bumblebees, solitary bees or birds. Policy implications. The wildlife-friendly farming schemes which included compulsory changes in management, Conservation Grade and organic, were more effective at increasing local habitat diversity and species richness compared with the less prescriptive Entry Level Stewardship scheme. We recommend that wildlife-friendly farming schemes should aim to enhance and maintain high local habitat diversity, through mechanisms such as option packages, where farmers are required to deliver a combination of several habitats.
Resumo:
Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se.
Resumo:
Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species–area slope (z ¼ 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z ¼ 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities.
Resumo:
Organic farming has often been found to provide benefits for biodiversity, but the benefits can depend on the species considered and characteristics of the surrounding landscape. In an intensively farmed area of Northeast Italy we investigated whether isolated organic farms, in a conventionally farmed landscape, provided local benefits for insect pollinators and pollination services. We quantified the relative effects of local management (i.e. the farm system), landscape management (proportion of surrounding uncultivated land) and interactions between them. We compared six organic and six conventional vine fields. The proportion of surrounding uncultivated land was calculated for each site at radii of 200, 500, 1000 and 2000 m. The organic fields did not differ from the conventional in their floral resources or proportion of surrounding uncultivated land. Data were collected on pollinator abundance and species richness, visitation rates to, and pollination of experimental potted plants. None of these factors were significantly affected by the farming system. The abundance of visits to the potted plants in the conventional fields tended to be negatively affected by the proportion of surrounding uncultivated land. The proportion fruit set, weight of seeds per plant and seed weight in conventional and organic fields were all negatively affected by the proportion of surrounding uncultivated land. In vine fields the impact of the surrounding landscape was stronger than the local management. Enhancement of biodiversity through organic farming should not be assumed to be ubiquitous, as potential benefits may be offset by the crop type, organicmanagement practices and the specific habitat requirements in the surrounding landscape.
Resumo:
Since the middle of the last century agricultural intensification within Europe has led to a drastic decline in the extent of botanically diverse grasslands. Whilst measures to enhance the diversity of agriculturally-improved grasslands are in place, success has often been limited. One of the primary factors limiting success is the paucity of sources of propagules of desirable species in the surrounding landscape. The restoration of two contrasting grassland types lowland hay meadow and chalk grassland) was examined using a replicated block experiment to assess the effectiveness of two methods of seed application (hay strewing and brush harvesting) and two methods of pre-treatment disturbance (power harrowing and turf stripping). The resulting changes in botanical composition were monitored for 4 years. Seed addition by both methods resulted in significant temporal trends in plant species composition and increases in plant species richness, which were further enhanced by disturbance. Power harrowing increased the effectiveness of the seed addition treatments at the lowland hay meadow site. At the chalk grassland site a more severe disturbance created by turf stripping was used and shown to be preferable. Whilst both hay strewing and brush harvesting increased plant species richness, hay strewing was more effective at creating a sward similar to that of the donor site. Soil disturbance and seed application rate at the recipient site and timing of the hay cut at the donor site are all factors to be considered prior to the commencement of restoration management. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The effects of metal contamination on natural populations of Collembola in soils from five sites in the Wolverhampton area ( West Midlands, England) were examined. Analysis revealed that metal concentrations were elevated above background levels at all sites. One location in particular (Ladymoor, a former smelting site) was highly contaminated with Cd, Cu, Pb and Zn at more than 20 times background levels. Biodiversity indices ( Shannon - Weiner, Simpson index, Margalef index, alpha index, species richness, Shaneven ( evenness) and Berger - Parker dominance) were calculated. Of these indices, estimates of species richness and evenness were most effective at highlighting the differences between the Collembola communities. Indeed, the highest number of species were found at the most contaminated site, although the Collembola population also had a comparatively low evenness value, with just two species dominating. The number of individuals per species were allocated into geometric classes and plotted against the cumulative number of species as a percentage. At Ladymoor, there were more geometric classes, and the slope of the line was shallower than at the other four sites. This characteristic is a feature of polluted sites, where a few species are dominant and most species are rare. The Ladymoor soil also had a dominance of Isotomurus palustris, and was the only site in which Ceratophysella denticulata was found. Previous studies have shown that these two species are often found in sites subject to high metal contamination. Survival and reproduction of the "standard'' test springtail, Folsomia candida (Willem), were determined in a 4 week exposure test to soils from all five sites. Mortality was significantly increased in adults and reproduction significantly lower in the Ladymoor soil in comparison to the other four sites. This study has shown that severe metal contamination can be related to the population structure of Collembola in the field, and performance of F. candida ( in soils from such sites) in the laboratory.
Resumo:
The aim of this study is to analyse the vascular flora and the local climate along an altitudinal gradient in the Lefka Ori massif Crete and to evaluate the potential effects of climate change on the plant diversity of the sub-alpine and alpine zones. It provides a quantitative/qualitative analysis of vegetation-environment relationships for four summits along an altitude gradient on the Lefka Ori massif Crete (1664-2339 m). The GLORIA multi-summit approach was used to provide vegetation and floristic data together with temperature records for every summit. Species richness and species turnover was calculated together with floristic similarity between the summits. 70 species were recorded, 20 of which were endemic, belonging to 23 different families. Cretan endemics dominate at these high altitudes. Species richness and turnover decreased with altitude. The two highest summits showed greater floristic similarity. Only 20% of the total flora recorded reaches the highest summit while 10% is common among summits. Overall there was a 4.96 degrees C decrease in temperature along the 675 m gradient. Given a scenario of temperature increase the ecotone between the sub-alpine and alpine zone would be likely to have the greatest species turnover. Southern exposures are likely to be invaded first by thermophilous species while northern exposures are likely to be more resistant to changes. Species distribution shifts will also depend on habitat availability. Many, already threatened, local endemic species will be affected first.