8 resultados para SPATIAL PROPENSITY SCORE MATCHING
em CentAUR: Central Archive University of Reading - UK
Resumo:
We analyze the migration behavior of graduates from UK universities with a focus on the salary benefits they receive from the migration process. We focus on sequential interregional migration and specifically examine the case of Science, Technology, Engineering and Mathematics (STEM) and Creative subject graduates. Our analysis differs from previous studies in that it accounts explicitly for migrant selectivity through propensity score matching, and it also classifies graduates into different migration behavior categories. Graduates were classified according to their sequential migration behavior first from their pre-university domicile to university and then from university to first job post-graduation. Our results show that ‘repeat migration’, as expected, is associated with the highest wage premium (around 15%). Other migration behaviors are also advantageous although this varies across different types of graduates. Creative graduates, for instance, do not benefit much from migration behaviors other than repeat migration. STEM graduates, on the contrary, benefit from both late migration and staying in the university area to work.
Resumo:
Transferring low tech manufacturing jobs to cheap labour countries is often seen by part of the general public and policy makers as a step into the de-industrialization of the European economies. However, recent contributions have shown that the effects on home economies are rarely negative. Our paper contributes to this literature by examining how outward investments to developing and less developed countries (LDCs) affect home activities of French and Italian firms that turn multinational in the period analysed. The effects of these investments are also compared to the effects of investments to developed economies (DCs). The analysis is carried out by using propensity score matching. We find no evidence of a negative effect of outward investments to LDCs. In Italy they have a positive long term effect on value added and employment. For France we find a positive effect on the size of domestic output and employment.
Resumo:
Nonlocal investors purchase and sell investment property in a distant metropolitan area. In this study, we identify capital value underperformance for nonlocal investors on both sides of the transaction, when they purchase and when they sell. The commercial real estate transactions data include a national sample of office property occurring in more than 100 U.S. markets. Using propensity-score matched sample to control for selection bias, we find that nonlocal investors overpay on the purchase by an estimated 13.8 % and sell at an estimated 7 % discount. These disadvantages relative to local investors expand with the geographic distance separating investor and asset. Nonlocal investors fundamentally overvalue similar assets sold to each other relative to assets transacted between locals, and are less patient as sellers. The positive bias in overpayment is directly tied to office rent differentials between the asset and investor markets.
Resumo:
We present a procedure for estimating two quantities defining the spatial externality in discrete-choice commonly referred to as 'the neighbourhood effect'. One quantity, the propensity for neighbours to make the same decision, reflects traditional preoccupations; the other quantity, the magnitude of the neighbourhood itself, is novel. Because both quantities have fundamental bearing on the magnitude of the spatial externality, it is desirable to have a robust algorithm for their estimation. Using recent advances in Bayesian estimation and model comparison, we devise such an algorithm and illustrate its application to a sample of northern-Filipino smallholders. We determine that a significant, positive, neighbourhood effect exists; that, among the 12 geographical units comprising the sample, the neighbourhood spans a three-unit radius; and that policy prescriptions are significantly altered when calculations account for the spatial externality.
Resumo:
High spatial resolution environmental data gives us a better understanding of the environmental factors affecting plant distributions at fine spatial scales. However, large environmental datasets dramatically increase compute times and output species model size stimulating the need for an alternative computing solution. Cluster computing offers such a solution, by allowing both multiple plant species Environmental Niche Models (ENMs) and individual tiles of high spatial resolution models to be computed concurrently on the same compute cluster. We apply our methodology to a case study of 4,209 species of Mediterranean flora (around 17% of species believed present in the biome). We demonstrate a 16 times speed-up of ENM computation time when 16 CPUs were used on the compute cluster. Our custom Java ‘Merge’ and ‘Downsize’ programs reduce ENM output files sizes by 94%. The median 0.98 test AUC score of species ENMs is aided by various species occurrence data filtering techniques. Finally, by calculating the percentage change of individual grid cell values, we map the projected percentages of plant species vulnerable to climate change in the Mediterranean region between 1950–2000 and 2020.
Resumo:
It is becoming increasingly important to be able to verify the spatial accuracy of precipitation forecasts, especially with the advent of high-resolution numerical weather prediction (NWP) models. In this article, the fractions skill score (FSS) approach has been used to perform a scale-selective evaluation of precipitation forecasts during 2003 from the Met Office mesoscale model (12 km grid length). The investigation shows how skill varies with spatial scale, the scales over which the data assimilation (DA) adds most skill, and how the loss of that skill is dependent on both the spatial scale and the rainfall coverage being examined. Although these results come from a specific model, they demonstrate how this verification approach can provide a quantitative assessment of the spatial behaviour of new finer-resolution models and DA techniques.
Resumo:
With movement toward kilometer-scale ensembles, new techniques are needed for their characterization. A new methodology is presented for detailed spatial ensemble characterization using the fractions skill score (FSS). To evaluate spatial forecast differences, the average and standard deviation are taken of the FSS calculated over all ensemble member–member pairs at different scales and lead times. These methods were found to give important information about the ensemble behavior allowing the identification of useful spatial scales, spinup times for the model, and upscale growth of errors and forecast differences. The ensemble spread was found to be highly dependent on the spatial scales considered and the threshold applied to the field. High thresholds picked out localized and intense values that gave large temporal variability in ensemble spread: local processes and undersampling dominate for these thresholds. For lower thresholds the ensemble spread increases with time as differences between the ensemble members upscale. Two convective cases were investigated based on the Met Office United Model run at 2.2-km resolution. Different ensemble types were considered: ensembles produced using the Met Office Global and Regional Ensemble Prediction System (MOGREPS) and an ensemble produced using different model physics configurations. Comparison of the MOGREPS and multiphysics ensembles demonstrated the utility of spatial ensemble evaluation techniques for assessing the impact of different perturbation strategies and the need for assessing spread at different, believable, spatial scales.
Resumo:
The decision to close airspace in the event of a volcanic eruption is based on hazard maps of predicted ash extent. These are produced using output from volcanic ash transport and dispersion (VATD)models. In this paper an objectivemetric to evaluate the spatial accuracy of VATD simulations relative to satellite retrievals of volcanic ash is presented. The 5 metric is based on the fractions skill score (FSS). Thismeasure of skill provides more information than traditional point-bypoint metrics, such as success index and Pearson correlation coefficient, as it takes into the account spatial scale overwhich skill is being assessed. The FSS determines the scale overwhich a simulation has skill and can differentiate between a "near miss" and a forecast that is badly misplaced. The 10 idealised scenarios presented show that even simulations with considerable displacement errors have useful skill when evaluated over neighbourhood scales of 200–700km2. This method could be used to compare forecasts produced by different VATDs or using different model parameters, assess the impact of assimilating satellite retrieved ash data and evaluate VATD forecasts over a long time period.