4 resultados para SOLUBLE IRON PORPHYRIN
em CentAUR: Central Archive University of Reading - UK
Resumo:
Preface. Iron is considered to be a minor element employed, in a variety of forms, by nearly all living organisms. In some cases, it is utilised in large quantities, for instance for the formation of magnetosomes within magnetotactic bacteria or during use of iron as a respiratory donor or acceptor by iron oxidising or reducing bacteria. However, in most cases the role of iron is restricted to its use as a cofactor or prosthetic group assisting the biological activity of many different types of protein. The key metabolic processes that are dependent on iron as a cofactor are numerous; they include respiration, light harvesting, nitrogen fixation, the Krebs cycle, redox stress resistance, amino acid synthesis and oxygen transport. Indeed, it is clear that Life in its current form would be impossible in the absence of iron. One of the main reasons for the reliance of Life upon this metal is the ability of iron to exist in multiple redox states, in particular the relatively stable ferrous (Fe2+) and ferric (Fe3+) forms. The availability of these stable oxidation states allows iron to engage in redox reactions over a wide range of midpoint potentials, depending on the coordination environment, making it an extremely adaptable mediator of electron exchange processes. Iron is also one of the most common elements within the Earth’s crust (5% abundance) and thus is considered to have been readily available when Life evolved on our early, anaerobic planet. However, as oxygen accumulated (the ‘Great oxidation event’) within the atmosphere some 2.4 billion years ago, and as the oceans became less acidic, the iron within primordial oceans was converted from its soluble reduced form to its weakly-soluble oxidised ferric form, which precipitated (~1.8 billion years ago) to form the ‘banded iron formations’ (BIFs) observed today in Precambrian sedimentary rocks around the world. These BIFs provide a geological record marking a transition point away from the ancient anaerobic world towards modern aerobic Earth. They also indicate a period over which the bio-availability of iron shifted from abundance to limitation, a condition that extends to the modern day. Thus, it is considered likely that the vast majority of extant organisms face the common problem of securing sufficient iron from their environment – a problem that Life on Earth has had to cope with for some 2 billion years. This struggle for iron is exemplified by the competition for this metal amongst co-habiting microorganisms who resort to stealing (pirating) each others iron supplies! The reliance of micro-organisms upon iron can be disadvantageous to them, and to our innate immune system it represents a chink in the microbial armour, offering an opportunity that can be exploited to ward off pathogenic invaders. In order to infect body tissues and cause disease, pathogens must secure all their iron from the host. To fight such infections, the host specifically withdraws available iron through the action of various iron depleting processes (e.g. the release of lactoferrin and lipocalin-2) – this represents an important strategy in our defence against disease. However, pathogens are frequently able to deploy iron acquisition systems that target host iron sources such as transferrin, lactoferrin and hemoproteins, and thus counteract the iron-withdrawal approaches of the host. Inactivation of such host-targeting iron-uptake systems often attenuates the pathogenicity of the invading microbe, illustrating the importance of ‘the battle for iron’ in the infection process. The role of iron sequestration systems in facilitating microbial infections has been a major driving force in research aimed at unravelling the complexities of microbial iron transport processes. But also, the intricacy of such systems offers a challenge that stimulates the curiosity. One such challenge is to understand how balanced levels of free iron within the cytosol are achieved in a way that avoids toxicity whilst providing sufficient levels for metabolic purposes – this is a requirement that all organisms have to meet. Although the systems involved in achieving this balance can be highly variable amongst different microorganisms, the overall strategy is common. On a coarse level, the homeostatic control of cellular iron is maintained through strict control of the uptake, storage and utilisation of available iron, and is co-ordinated by integrated iron-regulatory networks. However, much yet remains to be discovered concerning the fine details of these different iron regulatory processes. As already indicated, perhaps the most difficult task in maintaining iron homeostasis is simply the procurement of sufficient iron from external sources. The importance of this problem is demonstrated by the plethora of distinct iron transporters often found within a single bacterium, each targeting different forms (complex or redox state) of iron or a different environmental condition. Thus, microbes devote considerable cellular resource to securing iron from their surroundings, reflecting how successful acquisition of iron can be crucial in the competition for survival. The aim of this book is provide the reader with an overview of iron transport processes within a range of microorganisms and to provide an indication of how microbial iron levels are controlled. This aim is promoted through the inclusion of expert reviews on several well studied examples that illustrate the current state of play concerning our comprehension of how iron is translocated into the bacterial (or fungal) cell and how iron homeostasis is controlled within microbes. The first two chapters (1-2) consider the general properties of microbial iron-chelating compounds (known as ‘siderophores’), and the mechanisms used by bacteria to acquire haem and utilise it as an iron source. The following twelve chapters (3-14) focus on specific types of microorganism that are of key interest, covering both an array of pathogens for humans, animals and plants (e.g. species of Bordetella, Shigella, , Erwinia, Vibrio, Aeromonas, Francisella, Campylobacter and Staphylococci, and EHEC) as well as a number of prominent non-pathogens (e.g. the rhizobia, E. coli K-12, Bacteroides spp., cyanobacteria, Bacillus spp. and yeasts). The chapters relay the common themes in microbial iron uptake approaches (e.g. the use of siderophores, TonB-dependent transporters, and ABC transport systems), but also highlight many distinctions (such as use of different types iron regulator and the impact of the presence/absence of a cell wall) in the strategies employed. We hope that those both within and outside the field will find this book useful, stimulating and interesting. We intend that it will provide a source for reference that will assist relevant researchers and provide an entry point for those initiating their studies within this subject. Finally, it is important that we acknowledge and thank wholeheartedly the many contributors who have provided the 14 excellent chapters from which this book is composed. Without their considerable efforts, this book, and the understanding that it relays, would not have been possible. Simon C Andrews and Pierre Cornelis
Resumo:
Bacteria commonly utilise a unique type of transporter, called Feo, to specifically acquire the ferrous (Fe2+) form of iron from their environment. Enterobacterial Feo systems are composed of three proteins: FeoA, a small, soluble SH3-domain protein probably located in the cytosol; FeoB, a large protein with a cytosolic N-terminal G-protein domain and a C-terminal integral inner-membrane domain containing two 'Gate' motifs which likely functions as the Fe2+ permease; and FeoC, a small protein apparently functioning as an [Fe-S]-dependent transcriptional repressor. We provide a review of the current literature combined with a bioinformatic assessment of bacterial Feo systems showing how they exhibit common features, as well as differences in organisation and composition which probably reflect variations in mechanisms employed and function.
Resumo:
Bacteria commonly utilise a unique type of transporter, called Feo, to specifically acquire the ferrous (Fe2+) form of iron from their environment. Enterobacterial Feo systems are composed of three proteins: FeoA, a small, soluble SH3-domain protein probably located in the cytosol; FeoB, a large protein with a cytosolic N-terminal G-protein domain and a C-terminal integral inner-membrane domain containing two 'Gate' motifs which likely functions as the Fe2+ permease; and FeoC, a small protein apparently functioning as an [Fe-S]-dependent transcriptional repressor. We provide a review of the current literature combined with a bioinformatic assessment of bacterial Feo systems showing how they exhibit common features, as well as differences in organisation and composition which probably reflect variations in mechanisms employed and function.
Resumo:
Alterations in the gut microbiota have been recently linked to oral iron. We conducted two feeding studies including an initial diet-induced iron-depletion period followed by supplementation with nanoparticulate tartrate-modified ferrihydrite (Nano Fe(III): considered bioavailable to host but not bacteria) or soluble ferrous sulfate (FeSO4: considered bioavailable to both host and bacteria). We applied denaturing gradient gel electrophoresis and fluorescence in situ hybridization for study-1 and 454-pyrosequencing of fecal 16S rRNA in study-2. In study-1, the within-community microbial diversity increased with FeSO4 (P = 0.0009) but not with Nano Fe(III) supplementation. This was confirmed in study-2, where we also showed that iron depletion at weaning imprinted significantly lower within- and between-community microbial diversity compared to mice weaned onto the iron-sufficient reference diet (P < 0.0001). Subsequent supplementation with FeSO4 partially restored the within-community diversity (P = 0.006 in relation to the continuously iron-depleted group) but not the between-community diversity, whereas Nano Fe(III) had no effect. We conclude that (1) dietary iron depletion at weaning imprints low diversity in the microbiota that is not, subsequently, easily recovered; (2) in the absence of gastrointestinal disease iron supplementation does not negatively impact the microbiota; and (3) Nano Fe(III) is less available to the gut microbiota.