348 resultados para SOLAR ATMOSPHERE

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solar electromagnetic radiation powers Earth’s climate system and, consequently, it is often naively assumed that changes in this solar output must be responsible for changes in Earth’s climate. However, the Sun is close to a blackbody radiator and so emits according to its surface temperature and the huge thermal time constant of the outer part of the Sun limits the variability in surface temperature and hence output. As a result, on all timescales of interest, changes in total power output are limited to small changes in effective surface temperature (associated with magnetic fields) and potential, although as yet undetected, solar radius variations. Larger variations are seen in the UV part of the spectrum which is emitted from the lower solar atmosphere (the chromosphere) and which influences Earth’s stratosphere. There is interest in“top-down” mechanisms whereby solar UV irradiance modulates stratospheric temperatures and winds which, in turn, may influence the underlying troposphere where Earth’s climate and weather reside. This contrasts with “bottom-up” effects in which the small total solar irradiance (dominated by the visible and near-IR) variations cause surface temperature changes which drive atmospheric circulations. In addition to these electromagnetic outputs, the Sun modulates energetic particle fluxes incident on the Earth. Solar Energetic Particles (SEP) are emitted by solar flares and from the shock fronts ahead of supersonic (and super-Alfvenic) ejections of material from the solar atmosphere. These SEPs enhance the destruction of polar stratospheric ozone which could be an additional form of top-down climate forcing. Even more energetic are Galactic Cosmic Rays (GCRs). These particles are not generated by the Sun, rather they originate at the shock fronts emanating from violent galactic events such as supernovae explosions; however, the expansion of the solar magnetic field into interplanetary space means that the Sun modulates the number of GCRs reaching Earth. These play a key role in enabling Earth’s global electric (thunderstorm) circuit and it has been proposed that they also modulate the formation of clouds. Both electromagnetic and corpuscular solar effects are known to vary over the solar magnetic cycle which is typically between 10 and 14 yrs in length (with an average close to 11 yrs). The solar magnetic field polarity at any one phase of one of these activity cycles is opposite to that at the same phase of the next cycle and this influences some phenomena, for example GCRs, which therefore show a 22 yr (“Hale”) cycle on average. Other phenomena, such as irradiance modulation, do not depend on the polarity of the magnetic field and so show only the basic 11-yr activity cycle. However, any effects on climate are much more significant for solar drifts over centennial timescales. This chapter discusses and evaluates potential effects on Earth’s climate system of variations in these solar inputs. Because of the great variety of proposed mechanisms, the wide range of timescales studied (from days to millennia) and the many debates (often triggered by the application of inadequate statistical methods), the literature on this subject is vast, complex, divergent and rapidly changing: consequently the number of references cited in this review is very large (yet still only a small fraction of the total).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An understanding of how the heliosphere modulates galactic cosmic ray (GCR) fluxes and spectra is important, not only for studies of their origin, acceleration and propagation in our galaxy, but also for predicting their effects (on technology and on the Earth’s environment and organisms) and for interpreting abundances of cosmogenic isotopes in meteorites and terrestrial reservoirs. In contrast to the early interplanetary measurements, there is growing evidence for a dominant role in GCR shielding of the total open magnetic flux, which emerges from the solar atmosphere and enters the heliosphere. In this paper, we relate a strong 1.68- year oscillation in GCR fluxes to a corresponding oscillation in the open solar magnetic flux and infer cosmic-ray propagation paths confirming the predictions of theories in which drift is important in modulating the cosmic ray flux.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies of the variation of geomagnetic activity over the past 140 years have quantified the "coronal source" magnetic flux F-s that leaves the solar atmosphere and enters the heliosphere and have shown that it has risen, on average, by an estimated 34% since 1963 and by 140% since 1900. This variation of open solar flux has been reproduced by Solanki et al. [2000] using a model which demonstrates how the open flux accumulates and decays, depending on the rate of flux emergence in active regions and on the length of the solar cycle. We here use a new technique to evaluate solar cycle length and find that it does vary in association with the rate of change of F-s in the way predicted. The long-term variation of the rate of flux emergence is found to be very similar in form to that in F-s, which may offer a potential explanation of why F-s appears to be a useful proxy for extrapolating solar total irradiance back in time. We also find that most of the variation of cosmic ray fluxes incident on Earth is explained by the strength of the heliospheric field (quantified by F-s) and use observations of the abundance of the isotope Be-10 (produced by cosmic rays and deposited in ice sheets) to study the decrease in F-s during the Maunder minimum. The interior motions at the base of the convection zone, where the solar dynamo is probably located, have recently been revealed using the helioseismology technique and found to exhibit a 1.3-year oscillation. This periodicity is here reported in observations of the interplanetary magnetic field and geomagnetic activity but is only present after 1940, When present, it shows a strong 22-year variation, peaking near the maximum of even-numbered sunspot cycles and showing minima at the peaks of odd-numbered cycles. We discuss the implications of these long-term solar and heliospheric variations for Earth's environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies of the variation of geomagnetic activity over the past 140 years have quantified the "coronal source" or "open" magnetic flux F-s that leaves the solar atmosphere and enters the heliosphere and have shown that it has risen, on average, by 34% since 1963 and by 140% since 1900. This variation is reflected in studies of the heliospheric field using isotopes deposited in ice sheets and meteorites by the action of galactic comic rays. The variation has also been reproduced using a model that demonstrates how the open flux accumulates and decays, depending on the rate of flux emergence in active regions and on the length of the solar cycle. The cosmic ray flux at energies > 3 GeV is found to have decayed by about 15% during the 20(th) century (and by about 4% at > 13 GeV). We show that the changes in the open flux do reflect changes in the photospheric and sub-surface field which offers an explanation of why open flux appears to be a good proxy for solar irradiance extrapolation. Correlations between F-s, solar cycle length, L, and 11-year smoothed sunspot number, R-11, explain why the various irradiance reconstructions for the last 150 years are similar in form. Possible implications of the inferred changes in cosmic ray flux and irradiance for global temperatures on Earth are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Long-duration observations of Neptune’s brightness in two visible wavelengths provide a disk-averaged estimate of its atmospheric aerosol. Brightness variations were previously associated with the 11-year solar cycle, through solar-modulated mechanisms linked with either ultra-violet (UV) or galactic cosmic ray (GCR) effects on atmospheric particles. Here we use a recently extended brightness dataset (1972-2014), with physically realistic modelling to show that rather than alternatives, UV and GCR are likely to be modulating Neptune’s atmosphere in combination. The importance of GCR is further supported by the response of Neptune's atmosphere to an intermittent 1.5 to 1.9 year periodicity, which occurred preferentially in GCR (not UV) during the mid-1980s. This periodicity was detected both at Earth, and in GCR measured by Voyager 2, then near Neptune. A similar coincident variability in Neptune’s brightness suggests nucleation onto GCR ions. Both GCR and UV mechanisms may occur more rapidly than the subsequent atmospheric particle transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use a simplified atmospheric general circulation model (AGCM) to investigate the response of the lower atmosphere to thermal perturbations in the lower stratosphere. The results show that generic heating of the lower stratosphere tends to weaken the sub-tropical jets and the tropospheric mean meridional circulations. The positions of the jets, and the extent of the Hadley cells, respond to the distribution of the stratospheric heating, with low latitude heating displacing them poleward, and uniform heating displacing them equatorward. The patterns of response to the low latitude heating are similar to those found to be associated with solar variability in previous observational data analysis, and to the effects of varying solar UV radiation in sophisticated AGCMs. In order to investigate the chain of causality involved in converting the stratospheric thermal forcing to a tropospheric climate signal we conduct an experiment which uses an ensemble of model spin-ups to analyse the time development of the response to an applied stratospheric perturbation. We find that the initial effect of the change in static stability at the tropopause is to reduce the eddy momentum flux convergence in this region. This is followed by a vertical transfer of the momentum forcing anomaly by an anomalous mean circulation to the surface, where it is partly balanced by surface stress anomalies. The unbalanced part drives the evolution of the vertically integrated zonal flow. We conclude that solar heating of the stratosphere may produce changes in the circulation of the troposphere even without any direct forcing below the tropopause. We suggest that the impact of the stratospheric changes on wave propagation is key to the mechanisms involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ground surface net solar radiation is the energy that drives physical and chemical processes at the ground surface. In this paper, multi-spectral data from the Landsat-5 TM, topographic data from a gridded digital elevation model, field measurements, and the atmosphere model LOWTRAN 7 are used to estimate surface net solar radiation over the FIFE site. Firstly an improved method is presented and used for calculating total surface incoming radiation. Then, surface albedo is integrated from surface reflectance factors derived from remotely sensed data from Landsat-5 TM. Finally, surface net solar radiation is calculated by subtracting surface upwelling radiation from the total surface incoming radiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of the ionospheric E-region during total solar eclipses have been used to provide information about the evolution of the solar magnetic field and EUV and X-ray emissions from the solar corona and chromosphere. By measuring levels of ionisation during an eclipse and comparing these measurements with an estimate of the unperturbed ionisation levels (such as those made during a control day, where available) it is possible to estimate the percentage of ionising radiation being emitted by the solar corona and chromosphere. Previously unpublished data from the two eclipses presented here are particularly valuable as they provide information that supplements the data published to date. The eclipse of 23 October 1976 over Australia provides information in a data gap that would otherwise have spanned the years 1966 to 1991. The eclipse of 4 December 2002 over Southern Africa is important as it extends the published sequence of measurements. Comparing measurements from eclipses between 1932 and 2002 with the solar magnetic source flux reveals that changes in the solar EUV and X-ray flux lag the open source flux measurements by approximately 1.5 years. We suggest that this unexpected result comes about from changes to the relative size of the limb corona between eclipses, with the lag representing the time taken to populate the coronal field with plasma hot enough to emit the EUV and X-rays ionising our atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite measurements and numerical forecast model reanalysis data are used to compute an updated estimate of the cloud radiative effect on the global multi-annual mean radiative energy budget of the atmosphere and surface. The cloud radiative cooling effect through reflection of shortwave radiation dominates over the longwave heating effect, resulting in a net cooling of the climate system of –21 Wm-2. The shortwave radiative effect of cloud is primarily manifest as a reduction in the solar radiation absorbed at the surface of -53 Wm-2. Clouds impact longwave radiation by heating the moist tropical atmosphere (up to around 40 Wm-2 for global annual means) while enhancing the radiative cooling of the atmosphere over other regions, in particular higher latitudes and sub-tropical marine stratocumulus regimes. While clouds act to cool the climate system during the daytime, the cloud greenhouse effect heats the climate system at night. The influence of cloud radiative effect on determining cloud feedbacks and changes in the water cycle are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed analysis is presented of solar UV spectral irradiance for the period between May 2003 and August 2005, when data are available from both the Solar Ultraviolet pectral Irradiance Monitor (SUSIM) instrument (on board the pper Atmosphere Research Satellite (UARS) spacecraft) and the Solar Stellar Irradiance Comparison Experiment (SOLSTICE) instrument (on board the Solar Radiation and Climate Experiment (SORCE) satellite). The ultimate aim is to develop a data composite that can be used to accurately determine any differences between the “exceptional” solar minimum at the end of solar cycle 23 and the previous minimum at the end of solar cycle 22 without having to rely on proxy data to set the long‐term change. SUSIM data are studied because they are the only data available in the “SOLSTICE gap” between the end of available UARS SOLSTICE data and the start of the SORCE data. At any one wavelength the two data sets are considered too dissimilar to be combined into a meaningful composite if any one of three correlations does not exceed a threshold of 0.8. This criterion removes all wavelengths except those in a small range between 156 nm and 208 nm, the longer wavelengths of which influence ozone production and heating in the lower stratosphere. Eight different methods are employed to intercalibrate the two data sequences. All methods give smaller changes between the minima than are seen when the data are not adjusted; however, correcting the SUSIM data to allow for an exponentially decaying offset drift gives a composite that is largely consistent with the unadjusted data from the SOLSTICE instruments on both UARS and SORCE and in which the recent minimum is consistently lower in the wave band studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-speed solar wind streams modify the Earth's geomagnetic environment, perturbing the ionosphere, modulating the flux of cosmic rays into the Earth atmosphere, and triggering substorms. Such activity can affect modern technological systems. To investigate the potential for predicting the arrival of such streams at Earth, images taken by the Heliospheric Imager (HI) on the STEREO-A spacecraft have been used to identify the onsets of high-speed solar wind streams from observations of regions of increased plasma concentrations associated with corotating interaction regions, or CIRs. In order to confirm that these transients were indeed associated with CIRs and to study their average properties, arrival times predicted from the HI images were used in a superposed epoch analysis to confirm their identity in near-Earth solar wind data obtained by the Advanced Composition Explorer (ACE) spacecraft and to observe their influence on a number of salient geophysical parameters. The results are almost identical to those of a parallel superposed epoch analysis that used the onset times of the high-speed streams derived from east/west deflections in the ACE measurements of solar wind speed to predict the arrival of such streams at Earth, assuming they corotated with the Sun with a period of 27 days. Repeating the superposed epoch analysis using restricted data sets demonstrates that this technique can provide a timely prediction of the arrival of CIRs at least 1 day ahead of their arrival at Earth and that such advanced warning can be provided from a spacecraft placed 40° ahead of Earth in its orbit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observations of noctilucent clouds have revealed a surprising coupling between the winter stratosphere and the summer polar mesopause region. In spite of the great distance involved, this inter-hemispheric link has been suggested to be the principal reason for both the year-to-year variability and the hemispheric differences in the frequency of occurrence of these high-altitude clouds. In this study, we investigate the dynamical influence of the winter stratosphere on the summer mesosphere using simulations from the vertically extended version of the Canadian Middle Atmosphere Model (CMAM). We find that for both Northern and Southern Hemispheres, variability in the summer polar mesopause region from one year to another can be traced back to the planetary-wave flux entering the winter stratosphere. The teleconnection pattern is the same for both positive and negative wave-flux anomalies. Using a composite analysis to isolate the events, it is argued that the mechanism for interhemispheric coupling is a feedback between summer mesosphere gravity-wave drag (GWD) and zonal wind, which is induced by an anomaly in mesospheric cross-equatorial flow, the latter arising from the anomaly in winter hemisphere GWD induced by the anomaly in stratospheric conditions.