4 resultados para SOIL EXTRACTS

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pot experiment was conducted to test the hypothesis that decomposition of organic matter in sewage sludge and the consequent formation of dissolved organic compounds (DOC) would lead to an increase in the bioavailability of the heavy metals. Two Brown Earth soils, one with clayey loam texture (CL) and the other a loamy sand (LS) were mixed with sewage sludge at rates equivalent to 0, 10 and 50 1 dry sludge ha(-1) and the pots were sown with ryegrass (Lolium perenne L.). The organic matter content and heavy metal availability assessed with soil extractions with 0.05 M CaCl2 were monitored over a residual time of two years, while plant uptake over one year, after addition of the sludge. It was found that the concentrations of Cd and Ni in both the ryegrass and the soil extracts increased slightly but significantly during the first year. In most cases, this increase was most evident especially at the higher sludge application rate (50 t ha(-1)). However, in the second year metal availability reached a plateau. Zinc concentrations in the ryegrass did not show an increase but the CaCl2 extracts increased during the first year. In contrast, organic matter content decreased rapidly in the first months of the first year and much more slowly in the second (total decrease of 16%). The concentrations of DOC increased significantly in the more organic rich CL soil in the course of two years. The pattern followed by the decomposition of organic matter with time and the production of DOC may provide at least a partial explanation for trend towards increased metal availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earthworms inhabiting arsenic contaminated soils may accelerate the leaching of As into surface and ground waters. We carried out three experiments to determine the impact of passage of As contaminated soil (1150 mgAs kg−1) through the gut of the earthworm Lumbricus terrestris on the mobility and speciation of As and the effects of earthworm mucus on As mobility. The concentration of water soluble As in soil increased (from 1.6 to 18 mg kg−1) after passage through the earthworm gut. Casts that were aged for 56 days still contained more than nine times greater water soluble As than bulk earthworm inhabited soil. Changes were due to increases in As(V) mobility, with no change in As(III). Dilute mucus extracts reduced As mobility through the formation of As-amino acid-iron oxide ternary complexes. More concentrated mucus extracts increased As mobility. These changes, together with those due to the passage through the gut, were due to increases in pH, phosphate and soluble organic carbon. The mobilisation of As from contaminated soils in the environment by cast production and mucus secretion may allow for accelerated leaching or uptake into biota which is underestimated when bulk soil samples are analysed and the influence of soil biota ignored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general consistency in the sequential order of petroleum hydrocarbon reduction in previous biodegradation studies has led to the proposal of several molecularly based biodegradation scales. Few studies have investigated the biodegradation susceptibility of petroleum hydrocarbon products in soil media, however, and metabolic preferences can change with habitat type. A laboratory based study comprising gas chromatography–mass spectrometry (GC–MS) analysis of extracts of oil-treated soil samples incubated for up to 161 days was conducted to investigate the biodegradation of crude oil exposed to sandy soils of Barrow Island, home to both a Class ‘‘A” nature reserve and Australia’s largest on-shore oil field. Biodegradation trends of the hydrocarbon-treated soils were largely consistent with previous reports but some unusual behaviour was recognised both between and within hydrocarbon classes. For example, the n-alkanes persisted at trace levels from day 86 to 161 following the removal of typically more stable dimethyl naphthalenes and methyl phenanthrenes. The relative susceptibility to biodegradation of different di- tri- and tetramethylnaphthalene isomers also showed several features distinct from previous reports. The unique biodegradation behaviour of Barrow Is. soil likely reflects difference in microbial functioning with physiochemical variation in the environment. Correlation of molecular parameters, reduction rates of selected alkyl naphthalene isomers and CO2 respiration values with a delayed (61 d) oil-treated soil identified a slowing of biodegradation with microcosm incubation; a reduced function or population of incubated soil flora might also influence the biodegradation patterns observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial transformation of phosphorus (P) compounds in soil is largely dependent on soil microbial community function, and is therefore sensitive to anthropogenic disturbances such as fertilization or cropping systems. However, the effect of soil management on the transcription of bacterial genes that encode phosphatases, such as phoD, is largely unknown. This greenhouse study examined the effect of long-term management and P amendment on potential alkaline phosphatase (ALP) activity and phoD gene (DNA) and transcript (RNA) abundance. Soil samples (0–15 cm) were collected from the Glenlea Long-term Rotation near Winnipeg, Manitoba, to compare organic, conventional and prairie management systems. In the greenhouse, pots of soil from each management system were amended with P as either soluble mineral fertilizer or cattle manure and then planted with Italian ryegrass (Lolium multiforum). Soils from each pot were sampled for analysis immediately and after 30 and 106 days. Significant differences among the soil/P treatments were detected for inorganic P, but not the organic P in NaHCO3-extracts. At day 0, ALP activity was similar among the soil/P treatments, but was higher after 30 days for all P amendments in soil from organically managed plots. In contrast, ALP activity in soils under conventional and prairie management responded to increasing rates of manure only, with significant effects from medium and high manure application rates at 30 and 106 days. Differences in ALP activity at 30 days corresponded to the abundance of bacterial phoD genes, which were also significantly higher in soils under organic management. However, this correlation was not significant for transcript abundance. Next-generation sequencing allowed the identification of 199 unique phoD operational taxonomic units (OTUs) from the metagenome (soil DNA) and 35 unique OTUs from the metatranscriptome (soil RNA), indicating that a subset of phoD genes was being transcribed in all soils.