77 resultados para SODIUM CHANNELS
em CentAUR: Central Archive University of Reading - UK
Resumo:
Previous studies have shown that "Mudanpi", a Chinese herbal medicine, has a significant cardioprotective effect against myocardial ischaemia. Based on these findings we hypothesised that paeonol, the main component of Mudanpi, might have an effect on the cellular electrophysiology of cardiac ventricular myocytes. The effects of paeonol on the action potential and ion channels of cardiac ventricular myocytes were studied using the standard whole-cell configuration of the patch-clamp technique. Ventricular myocytes were isolated from the hearts of adult guinea-pig by enzymic dispersion. The myocytes were continuously perfused with various experimental solutions at room temperature and paeonol applied in the perfusate. Action potentials and membrane currents were recorded using both current and voltage clamp modes of the patch-clamp technique. Paeonol, at concentrations 160 mu M and 640 mu M, decreased the action potential upstroke phase, an action associated with the blockade of the voltage-gated, fast sodium channel. The effects of paeonol on both action potential and Na+ current were concentration dependent. Paeonol had a high affinity for inactivated sodium channels. Paeonol also shortened the action potential duration, in a manner not associated with the blockade of the calcium current, or the enhancement of potassium currents. These findings suggest that paeonol, and therefore Mudanpi, may possess antiarrhythmic activity, which may confer its cardioprotective effects. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
Cannabidiol (CBD) is a non-psychoactive, well-tolerated, anticonvulsant plant cannabinoid, although its mechanism(s) of seizure suppression remains unknown. Here, we investigate the effect of CBD and the structurally similar cannabinoid, cannabigerol (CBG), on voltage-gated Na+ (NaV) channels, a common anti-epileptic drug target. CBG’s anticonvulsant potential was also assessed in vivo. CBD effects on NaV channels were investigated using patch-clamp recordings from rat CA1 hippocampal neurons in brain slices, human SH-SY5Y (neuroblastoma) cells and mouse cortical neurons in culture. CBG effects were also assessed in SH-SY5Y cells and mouse cortical neurons. CBD and CBG effects on veratridine-stimulated human recombinant NaV1.1, 1.2 or 1.5 channels were assessed using a membrane potential-sensitive fluorescent dye high-throughput assay. The effect of CBG on pentyleneterazole-induced (PTZ) seizures was assessed in rat. CBD (10M) blocked NaV currents in SH-SY5Y cells, mouse cortical neurons and recombinant cell lines, and affected spike parameters in rat CA1 neurons; CBD also significantly decreased membrane resistance. CBG blocked NaV to a similar degree to CBD in both SH-SY5Y and mouse recordings, but had no effect (50-200mg/kg) on PTZ-induced seizures in rat. CBD and CBG are NaV channel blockers at micromolar concentrations in human and murine neurons and recombinant cells. In contrast to previous reports investigating CBD, CBG had no effect upon PTZ-induced seizures in rat, indicating that NaV blockade per se does not correlate with anticonvulsant effects.
Resumo:
Response of cotton (Gossypium hirsutum L. cv. NIAB-78) to salinity, in terms of seed germination, seedling root growth and root Na+ and K+ content was determined in a laboratory experiment. Cotton seeds were exposed to increasing salinity levels using germination water with Sodium chloride concentrations of 0, 50, 100, 150 and 200 mM, to provide different degrees of salt stress. Germinated seeds were counted and roots were harvested at 24, 48, 72 and 96 h after the start of the experiment. It appeared that seed germination was only slightly affected by an increase in salinity (in most cases the differences between treatment were non-significant), whereas root length, root growth rate, root fresh and dry weights were severely affected, generally highly significant differences in these variables were found for comparisons involving most combinations of salinity levels, in particular with increased incubation period. K+ contents decreased with increasing salinity levels, although differences in K+ content were only significant when comparing the control and the 4 salinity levels. Na+ content of the roots increased with increasing levels of NaCl in the germination water, suggesting an exchange of K+ for Na+. The ratio K+/Na+ strongly decreased with rising levels of salinity from around 4.5 for the control to similar to 1 at 200 mM NaCl.
Resumo:
Procedures for routine analysis of soil phosphorus (P) have been used for assessment of P status, distribution and P losses from cultivated mineral soils. No similar studies have been carried out on wetland peat soils. The objective was to compare extraction efficiency of ammonium lactate (PAL), sodium bicarbonate (P-Olsen), and double calcium lactate (P-DCaL) and P distribution in the soil profile of wetland peat soils. For this purpose, 34 samples of the 0-30, 30-60 and 60-90 cm layers were collected from peat soils in Germany, Israel, Poland, Slovenia, Sweden and the United Kingdom and analysed for P. Mean soil pH (CaCl2, 0.01 M) was 5.84, 5.51 and 5.47 in the 0-30, 30-60 and 60-90 cm layers, respectively. The P-DCaL was consistently about half the magnitude of either P-AL or P-Olsen. The efficiency of P extraction increased in the order P-DCaL < P-AL &LE; P-Olsen, with corresponding means (mg kg(-1)) for all soils (34 samples) of 15.32, 33.49 and 34.27 in 0-30 cm; 8.87, 17.30 and 21.46 in 30-60 cm; and 5.69, 14.00 and 21.40 in 60-90 cm. The means decreased with depth. When examining soils for each country separately, P-Olsen was relatively evenly distributed in the German, UK and Slovenian soils. P-Olsen was linearly correlated (r = 0.594, P = 0.0002) with pH, whereas the three P tests (except P-Olsen vs P-DCaL) significantly correlated with each other (P = 0.017850.0001). The strongest correlation (r = 0.617, P = 0.0001) was recorded for P-AL vs P-DCaL) and the two methods were inter-convertible using a regression equation: P-AL = -22.593 + 5.353 pH + 1.423 P-DCaL, R-2 = 0.550.
Resumo:
The objective was to determine the concentration of total selenium (Se) and the proportion of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in post mortem tissues of beef cattle offered diets containing graded additions of selenized enriched yeast (SY) [Saccharomyces cerevisae CNCM I-3060]), or sodium selenite (SS). Oxidative stability and tissue glutathione peroxidase (GSH-Px) activity of edible muscle tissue were assessed 10 d post-mortem. Thirty two beef cattle were offered, for a period of 112 d, a total mixed ration which had either been supplemented with SY (0, 0.15 or 0.35 mg Se/kg DM) or SS (0.15 mg Se/kg DM). At enrollment (0 d) and at 28, 56, 84 and 112 d following enrollment, blood samples were taken for Se and Se species determination, as well as whole blood GSH-Px activity. At the end of the study beef cattle were euthanized and samples of heart, liver, kidney, and skeletal muscle (LM and psoas major) were retained for Se and Se species determination. Tissue GSH-Px activity and thiobarbituric acid reactive substances (TBARS) were determined in skeletal muscle tissue (LM only). The incorporation into the diet of ascending concentrations of Se as SY increased whole blood total Se and the proportion of total Se comprised as SeMet, as well as GSH-Px activity. There was also a dose dependant response to the graded addition of SY on total Se and proportion of total Se as SeMet in all tissues and GSH-Px activity in skeletal muscle tissue. Furthermore, total Se concentration of whole blood and tissues was greater in those animals offered SY when compared with those receiving a comparable dose of SS, indicating an improvement in Se availability and tissue Se retention. Likewise, GSH-Px activity in whole blood and LM was greater in those animals offered SY when compared with those receiving a comparable dose of SS. However, these increases in tissue total Se and GSH-Px activity appeared to have little or no effect in meat oxidative stability.
Resumo:
The objective was to determine the concentration of total selenium (Se) and the proportion of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys), as well as meat quality in terms of oxidative stability in post mortem tissues of lambs offered diets with an increasing dose rate of selenized enriched yeast (SY), or sodium selenite (SS). Fifty lambs were offered, for a period of 112 d, a total mixed ration which had either been supplemented with SY (0, 0.11, 0.21 or 0.31 mg/kg DM to give total Se contents of 0.19, 0.3, 0.4 and 0.5 mg Se/kg DM for treatments T1, T2, T3 and T4, respectively) or SS (0.11 mg/kg DM to give 0.3 mg Se/kg DM total Se [T5]). At enrolment and at 28, 56, 84 and 112 d following enrolment, blood samples were taken for Se and Se species determination, as well as glutathione peroxidase (GSH-Px) activity. At the end of the study lambs were euthanased and samples of heart, liver, kidney, and skeletal muscle were retained for Se and Se species determination. Tissue GSH-Px activity and thiobarbituric acid reactive substances (TBARS) were determined in Longissimus Thoracis. The incorporation into the diet of ascending concentrations of Se as SY increased whole blood total Se and the proportion of total Se comprised as SeMet, and erythrocyte GSH-Px activity. Comparable doses of SS supplementation did not result in significant differences between these parameters. With the exception of kidney tissue, all other tissues showed a dose dependant response to increasing concentrations of dietary SY, such that total Se and SeMet increased. Selenium content of Psoas Major was higher in animals fed SY when compared to a similar dose of SS, indicating improvements in Se availability and retention. There were no significant treatment effects on meat quality assessments GHS-Px and TBARS, reflecting the lack of difference in the proportion of total Se that was comprised as SeCys. However, oxidative stability improved marginally with ascending tissue Se content, providing an indication of a linear dose response whereby TBARS improved with ascending SY inclusion.
Resumo:
Background: Aberrant glomerular mesangial cell (MC) proliferation is a common finding in renal diseases. T-type calcium channels (T-CaCN) play an important role in the proliferation of a number of cell types, including vascular smooth muscle cells. The hypothesis that T-CaCN may play a role in the proliferation of human MC was investigated. Methods: The presence of T-CaCN in primary cultures of human MC was examined using voltage clamping and by RT-PCR. The effect of calcium channel inhibitors, and of siRNA directed against the Cav3.2 T-CaCN isoform, on MC proliferation was assessed using the microculture tetrazolium assay and nuclear BrdU incorporation. Results: Human MC express only the Cav3.2 T-CaCN isoform. Co-incubation of MC with a T-CaCN inhibitor (mibefradil, TH1177 or Ni2+) results in a concentration-dependent attenuation of proliferation. This effect cannot be attributed to direct drug-induced cytotoxicity or apoptosis and is not seen with verapamil, an L-type channel blocker. Transfection of MC with siRNA results in knockdown of T-CaCN Cav3.2 mRNA and a clear attenuation of MC proliferation. Conclusions: These results demonstrate for the first time an important role for T-CaCN in human MC proliferation. This could potentially lead to a novel therapy in the treatment of proliferative renal diseases.
Resumo:
Superior enantioselectivity in the dihydroxylation of trans-stilbene catalysed by anchored triosmium carbonyl species without using a chiral modifier is observed inside sterically congested MCM-41 channels; this effect is more pronounced through the introduction of surface Al sites into the silicate.
Resumo:
Single crystal X-ray diffraction studies and solvent dependent NMR titration reveal that the designed pepticles I and 11, Boc-Xx(1)-Aib(2)-Yy(3)-NH(CH2)(2)NH-Yy(3)-Aib(2)-Xx(1)-Boc, where Xx and Yy are lie and Leu in peptide I and Leu and Val in peptide 11, respectively, fold into a turn-linker-turn (T-L-T) conformation both in the solid state and in solution. In the crystalline state the T-L-T foldamers; of peptide I and II self-assemble to form a three-dimensional framework of channels. The insides of the channels are hydrophilic and found to contain solvent CHCl3 hydrogen bonded to exposed C=O of Aib located at the turn regions. (c) 2008 Elsevier B.V. All rights reserved.