3 resultados para SMA
em CentAUR: Central Archive University of Reading - UK
Resumo:
The human mirror neuron system (hMNS) is believed to provide a basic mechanism for social cognition. Event-related desynchronization (ERD) in alpha (8–12 Hz) and low beta band (12–20 Hz) over sensori-motor cortex has been suggested to index mirror neurons' activity. We tested whether autistic traits revealed by high and low scores on the Autistic Quotient (AQ) in the normal population are linked to variations in the electroencephalogram (EEG) over motor, pre-motor cortex and supplementary motor area (SMA) during action observation. Results revealed that in the low AQ group, the pre-motor cortex and SMA were more active during hand action than static hand observation whereas in the high AQ group the same areas were active both during static and hand action observation. In fact participants with high traits of autism showed greater low beta ERD while observing the static hand than those with low traits and this low beta ERD was not significantly different when they watched hand actions. Over primary motor cortex, the classical alpha and low beta ERD during hand actions relative to static hand observation was found across all participants. These findings suggest that the observation–execution matching system works differently according to the degree of autism traits in the normal population and that this is differentiated in terms of the EEG according to scalp site and bandwidth.
Resumo:
Learned helplessness is a maladaptive response to uncontrollable stress characterized by impaired motor escape responses, reduced motivation and learning deficits. There are important individual differences in the likelihood of becoming helpless following exposure to uncontrollable stress but little is known about the neural mechanisms underlying these individual differences. Here we used structural MRI to measure gray and white matter in individuals with chronic pain, a population at high risk for helplessness due to prolonged exposure to a poorly controlled stressor (pain). Given that self-reported helplessness is predictive of treatment outcomes in chronic pain, understanding such differences might provide valuable clinical insight. We found that the magnitude of self-reported helplessness correlated with cortical thickness in the supplementary motor area (SMA) and midcingulate cortex, regions implicated in cognitive aspects of motor behavior. We then examined the white matter connectivity of these regions and found that fractional anisotropy of connected white matter tracts along the corticospinal tract was associated with helplessness and mediated the relationship between SMA cortical thickness and helplessness. These data provide novel evidence that links individual differences in the motor output pathway with perceived helplessness over a chronic and poorly controlled stressor.
Resumo:
The transcription factor REST is a key suppressor of neuronal genes in non-neuronal tissues. REST has been shown to suppress pro-neuronal microRNAs in neural progenitors indicating that REST-mediated neurogenic suppression may act in part via microRNAs. We used neural differentiation of Rest-null mouse ESC to identify dozens of microRNAs regulated by REST during neural development. One of the identified microRNAs, miR-375, was upregulated during human spinal motor neuron development. We found that miR-375 facilitates spinal motor neurogenesis by targeting the cyclin kinase CCND2 and the transcription factor PAX6. Additionally, miR-375 inhibits the tumor suppressor p53 and protects neurons from apoptosis in response to DNA damage. Interestingly, motor neurons derived from a spinal muscular atrophy patient displayed depressed miR-375 expression and elevated p53 protein levels. Importantly, SMA motor neurons were significantly more susceptible to DNA damage induced apoptosis suggesting that miR-375 may play a protective role in motor neurons.