68 resultados para SILVER(I) COMPLEXES

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ligands PhL and MeL are obtained by condensing 2-formylpyridine with benzil dihydrazone and diacetyl dihydrazone, respectively, in 2: 1 molar proportion. With silver( I), PhL yields a double-stranded dinuclear cationic helicate 1 in which the metal is tetrahedral but MeL gives a cationic one-dimensional polymeric complex 2 where silver( I) is distorted square planar and the ligand backbone is nearly planar. In both complexes, metal: ligand ratio is 1: 1. Ab initio calculations on the ligands at the HF/6-31+G* level reveal that while PhL strongly prefers a helical conformation, MeL has a natural inclination to remain in a planar conformation. Density functional theory calculations on model silver( I) complexes show that formation of the linear polymer in the case of MeL is also an important factor in imposing the planar geometry of Ag(I) in 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compounds Ag(CN)(NH3) and Ag(Br)(NH3) are remarkable in that they form solids containing the simple molecular units NC-Ag-NH3 and Br-Ag-NH3, rather than extended solids, and are the first examples of simple linear asymmetric complexes of silver(I).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New Cu(I) and Ag(I) complexes were prepared by reaction of [M(NCCH3)(4)][X] (M = Cu or Ag; X = BF4 or PF6) with the bidentate chalcogenide ligands Ph2P(E)NHP(E)Ph-2 (E = S, S(2)dppa; E = Se, Se(2)dppa), and dpspf (1, 1'-bis(diphenylselenophosphoryl)ferrocene). Copper and silver behaved differently. While three molecules of either S(2)dppa and Se(2)dppa bind to a distorted tetrahedral Cu-4 cluster, with deprotonation of the ligand, 1:2 complexes of the neutral ligands are formed with Ag(l), with a tetrahedral coordination of the metal. The [Cu-4{Ph2P(Se)NP(Se)Ph-2}(3)](+) clusters assemble as dimers, held together by weak Se...Se distances interactions. Another dimer was observed for the [Ag(dpspf)](+) cation, with two short Ag...Se distances. DFT and MP2 calculations indicated the presence of attracting interactions, reflected in positive Mayer indices (MI). The electrochemistry study of this species showed that both oxidation and reduction took place at silver. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The copper(I) complex of L, the 1:2 condensate of benzil dihydrazone and 2-formylpyridine, exists as single, helical [CuL](+) and double helical [Cu2L2](2+) in dichloromethane solution but crystallizes only as the double helicate [Cu2L2](ClO4)(2). In contrast, earlier [New J Chem, 27 (2003) 193] it has been found that with L', the 1:2 condensate of benzil dihydrazone and 2-acetylpyridine, only the single helical monomeric species [CuL'](+) is isolable as solid. This contrasting behaviour of the copper(I) complexes of L and L' are scrutinised here by density functional calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of [M(NCCH3)(4)][PF6] (M = Ag, Cu) with the S2P2Me4 ligand in dichloromethane solution led to substitution of all the nitrile ligands by two molecules of the sulfur ligand, affording the new species [Ag(S2P2Me4)(2)][PF6] (1) and [Cu(S2P2Me4)(2)][PF6] (2). The structures of these complexes were determined by single crystal X-ray diffraction. showing the expected tetrahedral coordination around each metal. Density functional theory (DFT) calculations confirmed the different geometries and energies of the free and coordinated ligand, and provided a very good reproduction of the experimental structures, both for Ag and Cu. The lengths of the S=P bonds are barely affected by coordination, indicating that the pi bond is not important in binding to the metal. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the 1:2 condensate (L) of diethylenetriamine and benzaldehyde as the main ligand, binuclear copper(l) complexes [Cu2L2(4,4'-bipyridine)](CIO4)(2).0.5H(2)O (1a) and [Cu2L2(1,2-bis(4-pyridyl)ethane)](CIO4)(2) (1b) are synthesised. The two metal ions in la are bridged by 4,4'-bipyridine and those in 1b by 1,2-bis(4-pyridyl)ethane, From the X-ray crystal structure of la, each metal ion is found to be bound to three N atoms of L and one of the two N atoms of the bridging ligand in a distorted tetrahedral fashion. The Cu(I)-N bond lengths in la lie in the range of 1.998(5)-2.229(6) Angstrom. Electrochemical studies in dichloromethane (DCM) show that the (Cu2N8)-N-I moieties in la and 1b are composed of two essentially non-interacting (CuN4)-N-I cores with Cu-II/I potential of 0.44 V vs. SCE. While la displays metal induced quenching of the inherent emission of 4,4'-bipyridine in DCM solution, 1b exhibits two weak emission bands in DCM solution at 425 and 477 nm (total quantum yield = 3.59 x 10(-5)) originating from MLCT excited states. With the help of Extended Huckel calculations it is established that the higher energy emission in 1b is from Cu(I) --> bridging-ligand charge transfer excited state and the lower energy one in 1b from Cu(I) --> L charge transfer excited state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Facile in situ Cu(II) mediated transformation of p-tolylsulfonyldithiocarbimate in conjunction with polypyridyl or phosphine ligands into corresponding carbamate and thiocarbamate led to the formation of new copper complexes with varying nuclearities and geometries, via C-S bond activation of the ligand within identical reaction systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) with Cu(ClO(4))(2)center dot 6H(2)O in methanol in 3:1 M ratio at room temperature yields light green [CuL(3)](ClO(4))(2)center dot H(2)O (1). The X-ray crystal structure of the hemi acetonitrile solvate [CuL(3)](ClO(4))(2)center dot 0.5CH(3)CN has been determined which shows Jahn-Teller distortion in the CuN(6) core present in the cation [CuL(3)](2+). Complex 1 gives an axial EPR spectrum in acetonitrile-toluene glass with g(parallel to) = 2.262 (A(parallel to) = 169 x 10 (4) cm (1)) and g(perpendicular to) = 2.069. The Cu(II/I) potential in 1 in CH(2)Cl(2) at a glassy carbon electrode is 0.32 V versus NHE. This potential does not change with the addition of extra L in the medium implicating generation of a six-coordinate copper(I) species [CuL(3)](+) in solution. B3LYP/LanL2DZ calculations show that the six Cu-N bond distances in [CuL(3)](+) are 2.33, 2.25, 2.32, 2.25, 2.28 and 2.25 angstrom while the ideal Cu(I)-N bond length in a symmetric Cu(I)N(6) moiety is estimated as 2.25 angstrom. Reaction of L with Cu(CH(3)CN)(4)ClO(4) in dehydrated methanol at room temperature even in 4:1 M proportion yields [CuL(2)]ClO(4) (2). Its (1)H NMR spectrum indicates that the metal in [CuL(2)](+) is tetrahedral. The Cu(II/I) potential in 2 is found to be 0.68 V versus NHE in CH(2)Cl(2) at a glassy carbon electrode. In presence of excess L, 2 yields the cyclic voltammogram of 1. From (1)H NMR titration, the free energy of binding of L to [CuL(2)](+) to produce [CuL(3)](+) in CD(2)Cl(2) at 298 K is estimated as -11.7 (+/-0.2) kJ mol (1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of Cu(1,2-phenylenediamine)(2)(ClO4)(2) with neat RR'=O (R = methyl and/or ethyl) (lives Cu(2,2-dialkyl-2H-benzimidazole)ClO4. demetallation of which by the action of aqueous ammonia yields Pure 2,2-dialkyl-2H-benzimidazoles. These are characterised by NMR. hi the X-ray crystal Structure, Ag(2,2-methyl-2H-benzimi-dazolc)NO3 is Found to be a spiral 1D coordination polymer where the 2H-benzimidazole acts as an N,N bridge between two Ag(I) centus. Although 2H-benzimidazoles are very unstable in the free state, they are quite stable in their Cu(I)(1) and Ag(I) complexes. The 1,2-tautomerisation in imidazole and benzimidazole have been Studied by means of transition state calculations at B3LYP/6-3 11 +G(2d,p)* level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 1H NMR study of monosubstituted η-cyclopentadienyl-rhodium(I) complexes of type LLRh(C5H4X) and -iridium(I) complexes of type L2Ir(C5H4X) (L = ethene, LL = 1,3- or 1,5-diolefin; X = C(C6H5)3, CHO, or COOCH3) has been carried out. For complexes of both metals in which the neutral ligand is ethene or a non-conjugated diolefin the NMR spectra of the cyclopentadienyl protons are unusual in that H(2), H(5) resonate to high field either at room temperature or below. The corresponding NMR spectra for the cyclopentadienyl ring protons of complexes where the neutral ligand is a conjugated diene are, with one exception, normal. A single crystal X-ray structural analysis of (η4-2,4-dimethylpenta-1,4-diene)(η5-formylcyclopentadienyl)rhodium(I) (which exhibits an abnormal 1H NMR spectrum) reveals substantial localisation of electron density in the C(3)C(4) Cp ring bond (1.283(33) Å) which may be consistent with a contribution from an ‘allyl-ene’ rotamer to the ring—metal bonding scheme. An extended Hückel calculation with self consistent charge iteration was performed on this complex. The results predict a greater Mulliken overlap population for the C(3)C(4) bond in the cyclopentadienyl ring and show that the localisation is dependent on both the Cp ring substituent and the nature of the diolefin. The mass spectral fragmentation patterns of some representative diene complexes of iridium(I) and rhodium(I) are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structural transformations between cesium silver-copper cyanides under modest conditions, both in solution and in the solid state, are described. Three new cesium silver(I) copper(I) cyanides with three-dimensional (3-D) framework structures were prepared as single crystals from a one-pot reaction initially heated under hydrothermal conditions. The first product to appear, Cs3Ag2Cu3(CN)(8) (I), when left in contact with the supernatant produced CsAgCu(CN)(3) (II) and CsAgCu(CN)(3)center dot 1/3H(2)O (III) over a few months via a series of thermodynamically controlled cascade reactions. Crystals of the hydrate (III) can be dehydrated to polycrystalline CsAgCu(CN)(3) (II) on heating at 100 degrees C in a remarkable solid-state transformation involving substantial breaking and reconnection of metal-cyanide linkages. Astonishingly, the conversion between the two known polymorphs of CsAg2Cu(CN)(4), which also involves a major change in connectivity and topology, occurs at 180 degrees C as a single-crystal to single-crystal transformation. Structural features of note in these materials include the presence of helical copper-cyanide chains in (I) and (II), which in the latter compound produce a chiral material. In (II) and (III), the silver-copper cyanide networks are both self- and interpenetrating, features also seen in the known polymorphs of CsAg2Cu(CN)(4).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[Cu(2-acetylpyridine)(2)]ClO4 (1), characterised here, has a novel Cu'N202 core in the solid state. Variable-temperature H-1 NMR studies show that the two chelate rings open up in solution at room temperature and the keto oxygen atoms dangle freely. As the temperature is lowered, the 0 atoms tend to bind to the metal atom. The corresponding silver(I) complex, [Ag(2-acetylpyridine)2]ClO4 (4), characterised by single-crystal X-ray crystallography, has an (AgN2)-N-I core in the solid state as well as in solution. Thus, while 1 is fluxional, 4 is not. In cyclic voltammetry, complex 1 displays a quasireversible Cu-II/I couple with a half-wave potential of 0.40 V vs. SCE. Complex I is easily oxidised by air and H2O2 in methanol to give rise to a dinuclear copper(II) complex where the ligand framework is not simple acetylpyridine. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rh-I-terpyridine complexes have been unambiguously formed for the first time. The 2,21:6',2"-terpyridine (tpy), 4'-chloro-2,2':6',2"-terpyridine (4'-Cl-tpy) and 4'-(tert-butyldimethylsilyl-ortho-carboranyl)-2,2':6',2"-terpyridine (carboranyl-tpy) ligands were used for successful syntheses and characterisation of the corresponding Rh-I complexes with halide coligands, [Rh(X)(4'-Y-terpyridine)] (X = Cl, Y = H, Cl, carboranyl; X = Br, Y = H). All four neutral Rh-tpy complexes are square planar, with Rh-X bonds in the plane of the 4'-Y-terpyridine ligands. Full characterisation of these dark blue, highly air-sensitive compounds was hampered by their poor solubility in various organic solvents. This is mainly due to the formation of pi-stacked aggregates, as evidenced by the crystal structure of [Rh(Cl)(tpy)]; in addition, [Rh(Cl)(carboranyl-tpy)] merely forms discrete dimers. The (bonding) properties of the novel Rh-I-terpyridine complexes have been studied with single-crystal X-ray diffraction, (time-dependent) density functional theoretical (DFT) calculations, far-infrared spectroscopy, electronic absorption spectroscopy and cyclic voltammetry. From DFT calculations, the HOMO of the studied Rh-I-terpyridine complexes involves predominantly the metal centre, while the LUMO resides on the terpyridine ligand. Absorption bands of the studied complexes in the visible region (400-900 nm) can be assigned to MLCT and MLCT/XLCT transitions. The relatively low oxidation potentials of [Rh(X)(tpy)] (X = Cl, Br) point to a high electron density on the metal centre. This makes the Rh-I-terpyridine complexes strongly nucleophilic and (potentially) highly reactive towards various (small) substrate molecules containing carbon-halide bonds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present simultaneous multicolor infrared and optical photometry of the black hole X-ray transient XTE J1118+480 during its short 2005 January outburst, supported by simultaneous X-ray observations. The variability is dominated by short timescales, ~10 s, although a weak superhump also appears to be present in the optical. The optical rapid variations, at least, are well correlated with those in X-rays. Infrared JHKs photometry, as in the previous outburst, exhibits especially large-amplitude variability. The spectral energy distribution (SED) of the variable infrared component can be fitted with a power law of slope α=-0.78+/-0.07, where F_ν~ν^α. There is no compelling evidence for evolution in the slope over five nights, during which time the source brightness decayed along almost the same track as seen in variations within the nights. We conclude that both short-term variability and longer timescale fading are dominated by a single component of constant spectral shape. We cannot fit the SED of the IR variability with a credible thermal component, either optically thick or thin. This IR SED is, however, approximately consistent with optically thin synchrotron emission from a jet. These observations therefore provide indirect evidence to support jet-dominated models for XTE J1118+480 and also provide a direct measurement of the slope of the optically thin emission, which is impossible, based on the average spectral energy distribution alone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reaction of 1-(2'-pyridylazo)-2 -naphthol (Hpan) with [Ru(dmso)(4)Cl-2] (dmso=dimethylsulfoxide), [Ru(trpy)Cl-3] (trpy=2,2',2 ''-terpyridine), [Ru(bpy)Cl-3] (bpy=2,2'-bipyridine) and [Ru(PPh3)(3)Cl-2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)(2)], [Ru(trpy)(pan)](+) (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)(2)(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. in each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)](+) and [Ru(bpy)(pan)(pic)](+) complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d(6), S = 0) and show characteristic H-1 NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)-Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)(2)] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy) (pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation. (c) 2008 Elsevier Ltd. All rights reserved.