23 resultados para SHH SIGNALING PATHWAY

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neural crest is a multipotent embryonic cell population that arises from neural ectoderm and forms derivatives essential for vertebrate function. Neural crest induction requires an ectodermal signal, thought to be a Writ ligand, but the identity of the Wnt that performs this function in amniotes is unknown. Here, we demonstrate that Wnt6, derived from the ectoderm, is necessary for chick neural crest induction. Crucially, we also show that Wnt6 acts through the non-canonical pathway and not the beta-catenin-dependant pathway. Surprisingly, we found that canonical Wnt signaling inhibited neural crest production in the chick embryo. In light of studies in anamniotes demonstrating that canonical Wnt signaling induces neural crest, these results indicate a significant and novel change in the mechanism of neural crest induction during vertebrate evolution. These data also highlight a key role for noncanonical Wnt signaling in cell type specification from a stem population during development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lipid products of phosphoinositide 3-kinase (PI3K) are involved in many cellular responses such as proliferation, migration, and survival. Disregulation of PI3K-activated pathways is implicated in different diseases including cancer and diabetes. Among the three classes of PI3Ks, class I is the best characterized, whereas class II has received increasing attention only recently and the precise role of these isoforms is unclear. Similarly, the role of phosphatidylinositol-3-phosphate (PtdIns-3-P) as an intracellular second messenger is only just beginning to be appreciated. Here, we show that lysophosphatidic acid (LPA) stimulates the production of PtdIns-3-P through activation of a class II PI3K (PI3K-C2β). Both PtdIns-3-P and PI3K-C2β are involved in LPA-mediated cell migration. This study is the first identification of PtdIns-3-P and PI3K-C2β as downstream effectors in LPA signaling and demonstration of an intracellular role for a class II PI3K. Defining this novel PI3K-C2β- PtdIns-3-P signaling pathway may help clarify the process of cell migration and may shed new light on PI3K-mediated intracellular events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cellular actions of genistein are believed to mediate the decreased risk of breast cancer associated with high soy consumption. We have investigated the intracellular metabolism of genistein in T47D tumorigenic and MCF-10A nontumorigenic cells and assessed the cellular actions of resultant metabolites. Genistein selectively induced growth arrest and G2-M phase cell cycle block in T47D but not MCF10A breast epithelial cells. These antiproliferative effects were paralleled by significant differences in the association of genistein to cells and in particular its intracellular metabolism. Genistein was selectively taken up into T47D cells and was subject to metabolism by CYP450 enzymes leading to the formation of both 5,7,3',4'-tetrahydroxyisoflavone (THIF) and two glutathionyl conjugates of THIF THIF inhibited cdc2 activation via the phosphorylation of p38 MAP kinase, suggesting that this species may mediate genistein's cellular actions. THIF exposure activated p38 and caused subsequent inhibition of cyclin B1 (Ser 147) and cdc2 (Thr 161) phosphorylation, two events critical for the correct functioning of the cdc2-cyclin B1 complex. We suggest that the formation of THIF may mediate the cellular actions of genistein in tumorigenic breast epithelial cells via the activation of signaling through p38. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The regulation of platelet function by pharmacological agents that modulate platelet signaling haspharmacolo proven a successful approach to the prevention of thrombosis. A variety of molecules present in the diet have been shown to inhibit platelet activation, including the antioxidant quercetin. Objectives: In this report we investigate the molecular mechanisms through which quercetin inhibits collagen-stimulated platelet aggregation. Methods: The effect of quercetin on platelet aggregation, intracellular calcium release, whole cell tyrosine phosphorylation and intracellular signaling events including tyrosine phosphorylation and kinase activity of proteins involved in the collagen-stimulated glycoprotein (GP) signaling pathway were investigated. Results: We report that quercetin inhibits collagen-stimulated whole cell protein tyrosine phosphorylation and intracellular mobilization of calcium, in a concentration-dependent manner. Quercetin was also found to inhibit various events in signaling generated by the collagen receptor GPVI. This includes collagen-stimulated tyrosine phosphorylation of the Fc receptor gamma-chain, Syk, LAT and phospholipase Cgamma2. Inhibition of phosphorylation of the Fc receptor gamma-chain suggests that quercetin inhibits early signaling events following stimulation of platelets with collagen. The activity of the kinases that phosphorylate the Fc receptor gamma-chain, Fyn and Lyn, as well as the tyrosine kinase Syk and phosphoinositide 3-kinase was also inhibited by quercetin in a concentration-dependent manner, both in whole cells and in isolation. Conclusions: The present results provide a molecular basis for the inhibition by quercetin of collagen-stimulated platelet activation, through inhibition of multiple components of the GPVI signaling pathway, and may begin to explain the proposed health benefits of high quercetin intake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously identified allosteric modulators of the cannabinoid CB1 receptor (Org 27569, PSNCBAM-1) which display a contradictory pharmacological profile: increasing the specific binding of the CB1 receptor agonist [3H]CP55940 but producing a decrease in CB1 receptor agonist efficacy. Here we investigated the effect one or both compounds in a broad range of signalling endpoints linked to CB1 receptor activation. We assessed the effect of these compounds on CB1 receptor agonist-induced [35S]GTPγS binding, inhibition and stimulation of forskolin stimulated cAMP production, phosphorylation of ERK, and β arrestin recruitment. We also investigated the effect of these allosteric modulators on CB1 agonist binding kinetics. Both compounds display ligand dependence, being significantly more potent as modulators of CP55940 signalling as compared to WIN55212 and having little effect on [3H]WIN55212 binding. Org 27569 displays biased antagonism whereby it inhibits: agonist-induced [35S]GTPγS binding, simulation (Gαs mediated) and inhibition (Gαi mediated) of cAMP production and β arrestin recruitment. In contrast, it acts as an enhancer of agonist-induced ERK phosphoryation. Alone, the compound can act also as an allosteric agonist, increasing cAMP production and ERK phosphorylation. We find that in both saturation and kinetic binding experiments, the Org 27569 and PSNCBAM-1 appeared to influence only orthosteric ligand maximum occupancy rather than affinity. The data indicate that the allosteric modulators share a common mechanism whereby they increase available high affinity CB1 agonist binding sites. The receptor conformation stabilised by the allosterics appears to induce signalling and also selectively traffics orthosteric agonist signalling via the ERK phosphorylation pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In humans and other mammals, Tityus discrepans (Td) scorpion envenomation produces a variety of systemic effects including respiratory distress, a generalized inflammatory reaction, modulation of blood pressure, fibrin formation, and platelet activation. For many of these effects, the venom components and underlying mechanisms are not known. In the present study, we demonstrate that Td venom (TdV) stimulates integrin αIIbβ3-dependent aggregation of washed human and mouse platelets downstream of Src kinase activation. The pattern of increase in tyrosine phosphorylation induced by TdV in human platelets is similar to that induced by the collagen receptor GPVI, and includes FcR γ-chain, Syk, and PLC γ 2. Confirmation of GPVI activation by TdV was achieved by expression of human GPVI in chicken DT40 B cells and use of a reporter assay. To our surprise, TdV was able to activate mouse platelets deficient in the GPVI-FcR γ-chain complex through a pathway that was also dependent on Src kinases. TdV therefore activates platelets through GPVI and a second, as yet unidentified Src kinase-dependent pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

-Aminobutyric acid type A (GABAA) receptors, a family of Cl-permeable ion channels, mediate fast synaptic inhibition as postsynaptically enriched receptors for -aminobutyric acid at GABAergic synapses. Here we describe an alternative type of inhibition mediated byGABAA receptors present on neocortical glutamatergic nerve terminals and examine the underlying signaling mechanism(s). By monitoring the activity of the presynaptic CaM kinase II/synapsin I signaling pathway in isolated nerve terminals, we demonstrate that GABAA receptor activation correlated with an increase in basal intraterminal [Ca2]i. Interestingly, this activation of GABAA receptors resulted in a reduction of subsequent depolarization-evoked Ca2 influx, which thereby led to an inhibition of glutamate release. To investigate how the observed GABAA receptor-mediated modulation operates, we determined the sensitivity of this process to the Na-K-2Cl cotransporter 1 antagonist bumetanide, as well as substitution of Ca2 with Ba2, or Ca2/calmodulin inhibition by W7. All of these treatments abolished the modulation by GABAA receptors. Application of selective antagonists of voltage-gated Ca2 channels (VGCCs) revealed that the GABAA receptor-mediated modulation of glutamate release required the specific activity of L- and R-type VGCCs. Crucially, the inhibition of release by these receptors was abolished in terminals isolated from R-type VGCC knock-out mice. Together, our results indicate that a functional coupling between nerve terminal GABAA receptors and L- or R-type VGCCs is mediated by Ca2/calmodulin-dependent signaling. This mechanism provides a GABA-mediated control of glutamatergic synaptic activity by a direct inhibition of glutamate release.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pattern-recognition receptors (PRRs) detect molecular signatures of microbes and initiate immune responses to infection. Prototypical PRRs such as Toll-like receptors (TLRs) signal via a conserved pathway to induce innate response genes. In contrast, the signaling pathways engaged by other classes of putative PRRs remain ill defined. Here, we demonstrate that the β-glucan receptor Dectin-1, a yeast binding C type lectin known to synergize with TLR2 to induce TNFα and IL-12, can also promote synthesis of IL-2 and IL-10 through phosphorylation of the membrane proximal tyrosine in the cytoplasmic domain and recruitment of Syk kinase. syk−/− dendritic cells (DCs) do not make IL-10 or IL-2 upon yeast stimulation but produce IL-12, indicating that the Dectin-1/Syk and Dectin-1/TLR2 pathways can operate independently. These results identify a novel signaling pathway involved in pattern recognition by C type lectins and suggest a potential role for Syk kinase in regulation of innate immunity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We reported recently that bovine theca interna cells in primary culture express several type-I and type-II receptors for bone morphogenetic proteins (BMPs). The same cells express at least two potential ligands for these receptors (BMP-4 and - 7), whereas bovine granulosa cells and oocytes express BMP-6. Therefore, BMPs of intrafollicular origin may exert autocrine/paracrine actions to modulate theca cell function. Here we report that BMP-4, - 6, and - 7 potently suppress both basal ( P < 0.0001; respective IC50 values, 0.78, 0.30, and 1.50 ng/ml) and LH-induced ( P < 0.0001; respective IC50 values, 5.00, 0.55, and 4.55 ng/ml) androgen production by bovine theca cells while having only a moderate effect on progesterone production and cell number. Semiquantitative RT-PCR showed that all three BMPs markedly reduced steady-state levels of mRNA for P450c17. Levels of mRNA encoding steroidogenic acute regulatory protein, P450scc, and 3 beta-hydroxysteroid dehydrogenase were also reduced but to a much lesser extent. Immunocytochemistry confirmed a marked reduction in cellular content of P450c17 protein after BMP treatment ( P < 0.001). Exposure to BMPs led to cellular accumulation of phosphorylated Smad1, but not Smad2, confirming that the receptors signal via a Smad1 pathway. The specificity of the BMP response was further explored by coincubating cells with BMPs and several potential BMP antagonists, chordin, gremlin, and follistatin. Gremlin and chordin were found to be effective antagonists of BMP-4 and - 7, respectively, and the observation that both antagonists enhanced ( P < 0.01) androgen production in the absence of exogenous BMP suggests an autocrine/paracrine role for theca-derived BMP- 4 and - 7 in modulating androgen production. Collectively, these data indicate that an intrafollicular BMP signaling pathway contributes to the negative regulation of thecal androgen production and that ovarian hyperandrogenic dysfunction could be a result of a defective autoregulatory pathway involving thecal BMP signaling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Quercetin, a flavonoid present in the human diet, which is found in high levels in onions, apples, tea and wine, has been shown previously to inhibit platelet aggregation and signaling in vitro. Consequently, it has been proposed that quercetin may contribute to the protective effects against cardiovascular disease of a diet rich in fruit and vegetables. Objectives: A pilot human dietary intervention study was designed to investigate the relationship between the ingestion of dietary quercetin and platelet function. Methods: Human subjects ingested either 150 mg or 300 mg quercetin-4'-O-beta-D-glucoside Supplement to determine the systemic availability of quercetin. Platelets were isolated from subjects to analyse collagen-stimulated cell signaling and aggregation. Results: Plasma quercetin concentrations peaked at 4.66 mum (+/-0.77) and 9.72mum (+/-1.38) 30min after ingestion of 150-mg and 300-mg doses of quercefin-4'-O-beta-D-glucoside, respectively, demonstrating that quercetin was bioavailable, with plasma concentrations attained in the range known to affect platelet function in vitro. Platelet aggregation was inhibited 30 and 120 min after ingestion of both doses of quercetin-4'-O-beta-D-glucoside. Correspondingly, collagen-stimulated tyrosine phosphorylation of total platelet proteins was inhibited. This was accorripanied by reduced tyrosine phosphorylation of the tyrosine kinase Syk and phospholipase Cgamma2, components of the platelet glycoprotein VI collagen receptor signaling pathway. Conclusions: This study provides new evidence of the relatively high systemic availability of quercetin in the form of quercetin-4'-O-beta-D-glucoside by supplementation, and implicates quercetin as a dietary inhibitor of platelet cell signaling and thrombus formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A survey against the draft genome sequence and the cDNA/EST database of Ciona intestinalis identified a number of genes encoding transcription factors regulating a variety of processes including development. In the present study, we describe almost complete sets of genes for Fox, ETS-domain transcription factors, nuclear receptors, and NFkappaB as well as other factors regulating NFkappaB activity, with their phylogenetic nature. Vertebrate Fox transcription factors are currently delineated into 17 subfamilies: FoxA to FoxQ. The present survey yielded 29 genes of this family in the Ciona genome, 24 of which were Ciona orthologues of known Fox genes. In addition, we found 15 ETS aenes, 17 nuclear receptor genes, and several NFkappaB signaling pathway genes in the Ciona genome. The number of Ciona genes in each family is much smaller than that of vertebrates, which represents a simplified feature of the ascidian genome. For example, humans have two NFkappaB genes, three Rel genes, and five NFAT genes, while Ciona has one gene for each family. The Ciona genome also contains smaller numbers of genes for the NFkappaB regulatory system, i.e. after the split of ascidians/vertebrates, vertebrates evolved a more complex NFkappaB system. The present results therefore provide molecular information for the investigation of complex developmental processes, and an insight into chordate evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Peroxisome proliferator-activated receptor-(gamma) (PPAR(gamma)) is expressed in human platelets although in the absence of genomic regulation in these cells, its functions are unclear. OBJECTIVE: In the present study, we aimed to demonstrate the ability of PPAR(gamma) ligands to modulate collagen-stimulated platelet function and suppress activation of the glycoprotein VI (GPVI) signaling pathway. METHODS: Washed platelets were stimulated with PPAR(gamma) ligands in the presence and absence of PPAR(gamma) antagonist GW9662 and collagen-induced aggregation was measured using optical aggregometry. Calcium levels were measured by spectrofluorimetry in Fura-2AM-loaded platelets and tyrosine phosphorylation levels of receptor-proximal components of the GPVI signaling pathway were measured using immunoblot analysis. The role of PPAR(gamma) agonists in thrombus formation was assessed using an in vitro model of thrombus formation under arterial flow conditions. RESULTS: PPAR(gamma) ligands inhibited collagen-stimulated platelet aggregation that was accompanied by a reduction in intracellular calcium mobilization and P-selectin exposure. PPAR(gamma) ligands inhibited thrombus formation under arterial flow conditions. The incorporation of GW9662 reversed the inhibitory actions of PPAR(gamma) agonists, implicating PPAR(gamma) in the effects observed. Furthermore, PPAR(gamma) ligands were found to inhibit tyrosine phosphorylation levels of multiple components of the GPVI signaling pathway. PPAR(gamma) was found to associate with Syk and LAT after platelet activation. This association was prevented by PPAR(gamma) agonists, indicating a potential mechanism for PPAR(gamma) function in collagen-stimulated platelet activation. CONCLUSIONS: PPAR(gamma) agonists inhibit the activation of collagen-stimulation of platelet function through modulation of early GPVI signalling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Myostatin is a member of the transformating growth factor-_ (TGF-_) superfamily of proteins and is produced almost exclusively in skeletal muscle tissue, where it is secreted and circulates as a serum protein. Myostatin acts as a negative regulator of muscle mass through the canonical SMAD2/3/4 signaling pathway. Naturally occurring myostatin mutants exhibit a ‘double muscling’ phenotype in which muscle mass is dramatically increased as a result of both hypertrophy and hyperplasia. Myostatin is naturally inhibited by its own propeptide; therefore, we assessed the impact of adeno associated virus-8 (AAV8) myostatin propeptide vectors when systemically introduced in MF-1 mice. We noted a significant systemic increase in muscle mass in both slow and fast muscle phenotypes, with no evidence of hyperplasia; however, the nuclei-to- cytoplasm ratio in all myofiber types was significantly reduced. An increase in muscle mass in slow (soleus) muscle led to an increase in force output; however, an increase in fast (extensor digitorum longus [EDL]) muscle mass did not increase force output. These results suggest that the use of gene therapeutic regimens of myostatin inhibition for age-related or disease-related muscle loss may have muscle-specific effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

T-type Ca2+ channels play diverse roles in tissues such as sensory neurons, vascular smooth muscle, and cancers, where increased expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1) is often found. Here, we report regulation of T-type Ca2+ channels by carbon monoxide (CO) a HO-1 by-product. CO (applied as CORM-2) caused a concentration-dependent, poorly reversible inhibition of all T-type channel isoforms (Cav3.1-3.3, IC50 ∼3 μM) expressed in HEK293 cells, and native T-type channels in NG108-15 cells and primary rat sensory neurons. No recognized CO-sensitive signaling pathway could account for the CO inhibition of Cav3.2. Instead, CO sensitivity was mediated by an extracellular redox-sensitive site, which was also highly sensitive to thioredoxin (Trx). Trx depletion (using auranofin, 2-5 μM) reduced Cav3.2 currents and their CO sensitivity by >50% but increased sensitivity to dithiothreitol ∼3-fold. By contrast, Cav3.1 and Cav3.3 channels, and their sensitivity to CO, were unaffected in identical experiments. Our data propose a novel signaling pathway in which Trx acts as a tonic, endogenous regulator of Cav3.2 channels, while HO-1-derived CO disrupts this regulation, causing channel inhibition. CO modulation of T-type channels has widespread implications for diverse physiological and pathophysiological mechanisms, such as excitability, contractility, and proliferation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Evidence suggests the wide variation in platelet response within the population is genetically controlled. Unraveling the complex relationship between sequence variation and platelet phenotype requires accurate and reproducible measurement of platelet response. OBJECTIVE: To develop a methodology suitable for measuring signaling pathway-specific platelet phenotype, to use this to measure platelet response in a large cohort, and to demonstrate the effect size of sequence variation in a relevant model gene. METHODS: Three established platelet assays were evaluated: mobilization of [Ca(2+)](i), aggregometry and flow cytometry, each in response to adenosine 5'-diphosphate (ADP) or the glycoprotein (GP) VI-specific crosslinked collagen-related peptide (CRP). Flow cytometric measurement of fibrinogen binding and P-selectin expression in response to a single, intermediate dose of each agonist gave the best combination of reproducibility and inter-individual variability and was used to measure the platelet response in 506 healthy volunteers. Pathway specificity was ensured by blocking the main subsidiary signaling pathways. RESULTS: Individuals were identified who were hypo- or hyper-responders for both pathways, or who had differential responses to the two agonists, or between outcomes. 89 individuals, retested three months later using the same methodology, showed high concordance between the two visits in all four assays (r(2) = 0.872, 0.868, 0.766 and 0.549); all subjects retaining their phenotype at recall. The effect of sequence variation at the GP6 locus accounted for approximately 35% of the variation in the CRP-XL response. CONCLUSION: Genotyping-phenotype association studies in a well-characterized, large cohort provides a powerful strategy to measure the effect of sequence variation in genes regulating the platelet response.