38 resultados para SERUM
em CentAUR: Central Archive University of Reading - UK
Resumo:
The ability of chlorogenic acid to inhibit oxidation of human low-density lipoprotein (LDL) was studied by in vitro copper-induced LDL oxidation. The effect of chlorogenic acid on the lag time before LDL oxidation increased in a dose dependent manner by up to 176% of the control value when added at concentrations of 0.25 -1.0 μM. Dose dependent increases in lag time of LDL oxidation were also observed, but at much higher concentrations, when chlorogenic acid was incubated with LDL (up to 29.7% increase in lag phase for 10 μM chlorogenic acid) or plasma (up to 16.6% increase in lag phase for 200 μM chlorogenic acid) prior to isolation of LDL, and this indicated that chlorogenic acid was able to bind, at least weakly, to LDL. Bovine serum albumin (BSA) increased the oxidative stability of LDL in the presence of chlorogenic acid. Fluorescence spectroscopy showed that chlorogenic acid binds to BSA with a binding constant of 3.88 x 104 M-1. BSA increased the antioxidant effect of chlorogenic acid, and this was attributed to copper ions binding to BSA, thereby reducing the amount of copper available for inducing lipid peroxidation.
Resumo:
The interaction between four flavonoids (catechin, epicatechin, rutin and quercetin) and bovine serum albumin (BSA) was investigated using tryptophan fluorescence quenching. Quenching constants were determined using the Stern-Volmer equation to provide a measure of the binding affinity between the flavonoids and BSA. The binding affinity was found to be strongest for quercetin, and ranked in the order quercetin>rutin>epicatechin=catechin. The pH in the range of 5 to 7.4 does not affect significantly (p<0.05) the association of rutin, epicatechin and catechin with BSA, but quercetin exhibited a stronger affinity at pH 7.4 than at lower pH (p<0.05). Quercetin has a total quenching effect on BSA tryptophan fluorescence at a molar ratio of 10:1 and rutin at approximately 25:1. However, epicatechin and catechin did not fully quench tryptophan fluorescence over the concentration range studied. Furthermore, the data suggested that the association between flavonoids and BSA did not change molecular conformation of BSA and that hydrogen bonding, ionic and hydrophobic interaction are equally important driving forces for protein-flavonoid association.
Resumo:
MALDI MS profiling, using easily available body fluids such as blood serum, has attracted considerable interest for its potential in clinical applications. Despite the numerous reports on MALDI MS profiling of human serum, there is only scarce information on the identity of the species making up these profiles, particularly in the mass range of larger peptides. Here, we provide a list of more than 90 entries of MALDI MS profile peak identities up to 10 kDa obtained from human blood serum. Various modifications such as phosphorylation were detected among the peptide identifications. The overlap with the few other MALDI MS peak lists published so far was found to be limited and hence our list significantly extends the number of identified peaks commonly found in MALDI MS profiling of human blood serum.
Resumo:
BACKGROUND: The serum peptidome may be a valuable source of diagnostic cancer biomarkers. Previous mass spectrometry (MS) studies have suggested that groups of related peptides discriminatory for different cancer types are generated ex vivo from abundant serum proteins by tumor-specific exopeptidases. We tested 2 complementary serum profiling strategies to see if similar peptides could be found that discriminate ovarian cancer from benign cases and healthy controls. METHODS: We subjected identically collected and processed serum samples from healthy volunteers and patients to automated polypeptide extraction on octadecylsilane-coated magnetic beads and separately on ZipTips before MALDI-TOF MS profiling at 2 centers. The 2 platforms were compared and case control profiling data analyzed to find altered MS peak intensities. We tested models built from training datasets for both methods for their ability to classify a blinded test set. RESULTS: Both profiling platforms had CVs of approximately 15% and could be applied for high-throughput analysis of clinical samples. The 2 methods generated overlapping peptide profiles, with some differences in peak intensity in different mass regions. In cross-validation, models from training data gave diagnostic accuracies up to 87% for discriminating malignant ovarian cancer from healthy controls and up to 81% for discriminating malignant from benign samples. Diagnostic accuracies up to 71% (malignant vs healthy) and up to 65% (malignant vs benign) were obtained when the models were validated on the blinded test set. CONCLUSIONS: For ovarian cancer, altered MALDI-TOF MS peptide profiles alone cannot be used for accurate diagnoses.
Resumo:
Six nutrient formulations were studied for their efficacy in inducing mitosis in white lupin seedling cotyledon protoplasts of which the formulations of Schafer-Menuhr & Sturmer (AS) and Kao (K8p) were found to be superior over the other four when supplemented with 6-benzylaminopurine and alpha-naphthaleneacetic acid (alpha-NAA). An unltrafiltration treatment of K8p increased mitotic frequency by 130% when compared with the untreated control. Medium enrichment with 0.2% bovine serum albumin (BSA) brought about a dramatic 1341% rise in protoplast division in comparison with BSA-free medium but only when the enrichment was carried out in Kao and Michayluk (KM8p) background containing 2, 4-dichlorophenoxyacetic acid, alpha-NAA and zeatin. A higher number of protocolonies (each proliferating from single protoplast following multiple divisions) were seen in 0.4% BSA. With this breakthrough in white lupin protoplast research, it is now possible to reproducibly obtain protocolonies that was hitherto not possible.
Resumo:
The extent, causes, and physiological significance of the variation in number of follicles growing during ovarian follicular waves in human beings and cattle are unknown. Therefore, the present study examined the variability and repeatability in numbers of follicles 3 mm or greater in diameter during the follicular waves in bovine estrous cycles, and we determined if the variation in number of follicles during waves was associated with alterations in secretion of FSH, estradiol, inhibin, and insulin-like growth factor I (IGF-I). Dairy cattle were subjected to twice-daily ultrasound analysis to count total number of antral follicles 3 mm or greater in diameter throughout 138 different follicular waves. In another study, blood samples were taken at frequent intervals from cows that consistently had low or very high numbers of follicles during waves and were subjected to immunoassays. Results indicate the following: First, despite an approximately sevenfold variation in number of follicles during waves among animals and marked differences in age, stage of lactation, and season of the year, a very highly repeatable (0.95) number of follicles 3 mm or greater in diameter is maintained during the ovulatory and nonovulatory follicular waves of individuals. Second, variation in number of follicles 3 mm or greater in diameter during waves and the inverse association of number of follicles during waves with FSH are not directly explained by alterations in the patterns of secretion of estradiol, inhibin, or IGF-I. Third, ovarian ultrasound analysis can be used reliably by investigators to identify cattle that consistently have low or high numbers of follicles during waves, thus providing a novel experimental model to determine the causes and physiological significance of the high variation in antral follicle number during follicular waves among single-ovulating species, such as cattle or humans.
Resumo:
To determine the intra-individual (physiological) variation of prostate-specific antigen (PSA) measurements in men after a benign prostatic biopsy. Sixty-four men were prospectively assessed, all of whom had a benign prostatic biopsy within the preceding 13 months. The degree of intra-individual variability was established by calculating the coefficient of variation on four PSA levels obtained from each patient weekly over a month. Six patients were subsequently diagnosed with prostate cancer and their data are presented separately. In the remaining 58 patients the median (range) individual mean PSA value was 6.3 (0.5-34.1) ng/mL. The median (range) coefficient of variation within the group was 9.5 (2.4-76.1)%. There was a clear linear relationship between mean PSA level and the standard deviation. In 48 of the 63 patients analysed, the coefficient of variation for serum PSA values in the group as a whole was greater than the variation claimed for the assay technique. The significance of the linear relationship between PSA and the standard deviation is discussed, with particular reference to those men who had a benign prostate biopsy.
Resumo:
Severe acute respiratory syndrome (SARS) coronavirus (SCoV) spike (S) protein is the major surface antigen of the virus and is responsible for receptor binding and the generation of neutralizing antibody. To investigate SCoV S protein, full-length and individual domains of S protein were expressed on the surface of insect cells and were characterized for cleavability and reactivity with serum samples obtained from patients during the convalescent phase of SARS. S protein could be cleaved by exogenous trypsin but not by coexpressed furin, suggesting that the protein is not normally processed during infection. Reactivity was evident by both flow cytometry and Western blot assays, but the pattern of reactivity varied according to assay and sequence of the antigen. The antibody response to SCoV S protein involves antibodies to both linear and conformational epitopes, with linear epitopes associated with the carboxyl domain and conformational epitopes associated with the amino terminal domain. Recombinant SCoV S protein appears to be a suitable antigen for the development of an efficient and sensitive diagnostic test for SARS, but our data suggest that assay format and choice of S antigen are important considerations.
Resumo:
Oxidized LDL is present within atherosclerotic lesions, demonstrating a failure of antioxidant protection. A normal human serum ultrafiltrate of M-r below 500 was prepared as a model for the low M-r components of interstitial fluid, and its effects on LDL oxidation were investigated. The ultrafiltrate (0.3%, v/v) was a potent antioxidant for native LDL, but was a strong prooxidant for mildly oxidized LDL when copper, but not a water-soluble azo initiator, was used to oxidize LDL. Adding a lipid hydroperoxide to native LDL induced the antioxidant to prooxidant switch of the ultrafiltrate. Uric acid was identified, using uricase and add-back experiments, as both the major antioxidant and prooxidant within the ultrafiltrate for LDL. The ultrafiltrate or uric acid rapidly reduced Cu2+ to Cu+. The reduction of Cu2+ to Cu+ may help to explain both the antioxidant and prooxidant effects observed. The decreased concentration of Cu2+ would inhibit tocopherol-mediated peroxidation in native LDL, and the generation of Cu+ would promote the rapid breakdown of lipid hydroperoxides in mildly oxidized LDL into lipid radicals. The net effect of the low M-r serum components would therefore depend on the preexisting levels of lipid hydroperoxides in LDL.jlr These findings may help to explain why LDL oxidation occurs in atherosclerotic lesions in the presence of compounds that are usually considered to be antioxidants.
Resumo:
Ovarian cancer is characterized by vague, non-specific symptoms, advanced stage at diagnosis and poor overall survival. A nested case control study was undertaken on stored serial serum samples from women who developed ovarian cancer and healthy controls (matched for serum processing and storage conditions as well as attributes such as age) in a pilot randomized controlled trial of ovarian cancer screening. The unique feature of this study is that the women were screened for up to 7 years. The serum samples underwent prefractionation using a reversed-phase batch extraction protocol prior to MALDI-TOF MS data acquisition. Our exploratory analysis shows that combining a single MS peak with CA125 allows statistically significant discrimination at the 5% level between cases and controls up to 12 months in advance of the original diagnosis of ovarian cancer. Such combinations work much better than a single peak or CA125 alone. This paper demonstrates that mass spectra from the low molecular weight serum proteome carry information useful for early detection of ovarian cancer. The next step is to identify the specific biomarkers that make early detection possible.
Resumo:
The interactions of bovine serum albumin (BSA) with three ethylene oxide/butylene oxide (E/B) copolymers having different block lengths and varying molecular architectures is examined in this study in aqueous solutions. Dynamic light scattering (DLS) indicates the absence of BSA-polymer binding in micellar systems of copolymers with lengthy hydrophilic blocks. On the contrary, stable protein-polyrner aggregates were observed in the case of E18B10 block copolymer. Results from DLS and SAXS suggest the dissociation of E/B copolymer micelles in the presence of protein and the absorption of polymer chains to BSA surface. At high protein loadings, bound BSA adopts a more compact conformation in solution. The secondary structure of the protein remains essentially unaffected even at high polymer concentrations. Raman spectroscopy was used to give insight to the configurations of the bound molecules in concentrated solutions. In the vicinity of the critical gel concentration of E18B10 introduction of BSA can dramatically modify the phase diagram, inducing a gel-sol-gel transition. The overall picture of the interaction diagram of the E18B10-BSA reflects the shrinkage of the suspended particles due to destabilization of micelles induced by BSA and the gelator nature of the globular protein. SAXS and rheology were used to further characterize the structure and flow behavior of the polymer-protein hybrid gels and sols.
Resumo:
The objective of this article is to review existing studies concerning the effects of probiotics and prebiotics on serum cholesterol concentrations, with particular attention on the possible mechanisms of their action. Although not without exception, results from animal and human studies suggest a moderate cholesterol-lowering action of dairy products fermented with appropriate strain(s) of lactic acid bacteria and bifidobacteria. Mechanistically, probiotic bacteria ferment food-derived indigestible carbohydrates to produce short-chain fatty acids in the gut, which can then cause a decrease in the systemic levels of blood lipids by inhibiting hepatic cholesterol synthesis and/or redistributing cholesterol from plasma to the liver. Furthermore, some bacteria may interfere with cholesterol absorption from the gut by deconjugating bile salts and therefore affecting the metabolism of cholesterol, or by directly assimilating cholesterol. For prebiotic substances, the majority of studies have been done with the fructooligosaccharides inulin and oligofructose, and although convincing lipid-lowering effects have been observed in animals, high dose levels had to be used. Reports in humans are few in number. In studies conducted in normal-lipidemic subjects, two reported no effect of inulin or oligofructose on serum lipids, whereas two others reported a significant reduction in serum triglycerides (19 and 27%, respectively) with more modest changes in serum total and LDL cholesterol. At present, data suggest that in hyperlipidemic subjects, any effects that do occur result primarily in reductions in cholesterol, whereas in normal lipidemic subjects, effects on serum triglycerides are the dominant feature.
Resumo:
We report an investigation of the site specificity, extent and nature of modification of bovine serum albumin (BSA) incubated with fructose or glucose at physiological temperature and pH. Sites of early glycation (Heyns rearrangement products (HRP) from fructose; fructoselysine (FL) from glucose) as well as advanced glycation (N-epsilon-(carboxymethyl)lysine; CML) wereanalyzed by liquid chromatography-mass spectrometry. The major site of modification by fructose, like glucose, is Lysine-524 and this results in, respectively, 31 and 76% loss of the corresponding unmodified tryptic peptide, Gln525-Lys533. In addition, total lysine, HRP, FL, CML and N-epsilon-(carboxyethyl)lysine in the incubations, was quantified. Almost all of the loss of lysine in the fructose-modified BSA was attributed to the formation of CML, with the yield of CML being up to 17-fold higher than glucose-modified BSA. A mechanism for the formation of CML from the HRP is proposed.