3 resultados para SENSITIVE VISUAL PIGMENTS
em CentAUR: Central Archive University of Reading - UK
Resumo:
Given capacity limits, only a subset of stimuli 1 give rise to a conscious percept. Neurocognitive models suggest that humans have evolved mechanisms that operate without awareness and prioritize threatening stimuli over neutral stimuli in subsequent perception. In this meta analysis, we review evidence for this ‘standard hypothesis’ emanating from three widely used, but rather different experimental paradigms that have been used to manipulate awareness. We found a small pooled threat-bias effect in the masked visual probe paradigm, a medium effect in the binocular rivalry paradigm and highly inconsistent effects in the breaking continuous flash suppression paradigm. Substantial heterogeneity was explained by the stimulus type: the only threat stimuli that were robustly prioritized across all three paradigms were fearful faces. Meta regression revealed that anxiety may modulate threat biases, but only under specific presentation conditions. We also found that insufficiently rigorous awareness measures, inadequate control of response biases and low level confounds may undermine claims of genuine unconscious threat processing. Considering the data together, we suggest that uncritical acceptance of the standard hypothesis is premature: current behavioral evidence for threat-sensitive visual processing that operates without awareness is weak.
Resumo:
The authors assessed rats' encoding of the appearance or egocentric position of objects within visual scenes containing 3 objects (Experiment 1) or I object (Experiment 2A). Experiment 2B assessed encoding of the shape and fill pattern of single objects, and encoding of configurations (object + position, shape + fill). All were assessed by testing rats' ability to discriminate changes from familiar scenes (constant-negative paradigm). Perirhinal cortex lesions impaired encoding of objects and their shape; postrhinal cortex lesions impaired encoding of egocentric position, but the effect may have been partly due to entorhinal involvement. Neither lesioned group was impaired in detecting configural change. In Experiment 1, both lesion groups were impaired in detecting small changes in relative position of the 3 objects, suggesting that more sensitive tests might reveal configural encoding deficits.
Resumo:
The premotor theory of attention claims that attentional shifts are triggered during response programming, regardless of which response modality is involved. To investigate this claim, event-related brain potentials (ERPs) were recorded while participants covertly prepared a left or right response, as indicated by a precue presented at the beginning of each trial. Cues signalled a left or right eye movement in the saccade task, and a left or right manual response in the manual task. The cued response had to be executed or withheld following the presentation of a Go/Nogo stimulus. Although there were systematic differences between ERPs triggered during covert manual and saccade preparation, lateralised ERP components sensitive to the direction of a cued response were very similar for both tasks, and also similar to the components previously found during cued shifts of endogenous spatial attention. This is consistent with the claim that the control of attention and of covert response preparation are closely linked. N1 components triggered by task-irrelevant visual probes presented during the covert response preparation interval were enhanced when these probes were presented close to cued response hand in the manual task, and at the saccade target location in the saccade task. This demonstrates that both manual and saccade preparation result in spatially specific modulations of visual processing, in line with the predictions of the premotor theory.